为什么要进行标准化预处理?
一般用到距离的机器学习问题,都需要进行标准化预处理。
例如:在分类问题中,不同特征的数量级和量纲不同。如果一个特征的数量级很大,就可能会湮没其他特征对于分类决策的影响。
所以需要统一数量级和去量纲,使其变成均值为0、方差为1的数据。
标准化预处理公式:(x−mean)/std(x - mean) / std(x−mean)/std,mean为均值,std为标准差
即数学中常见的: (x−μ)/σ(x-μ)/σ(x−μ)/σ
对于一维数据期望和标准差的计算(假设样本数为N):
μ∗=1N∑i=1Nxiμ^*=\frac{1}{N}\sum_{i=1}^{N}x_iμ∗=N1i=1∑Nxi
σ∗=1N∑i=1N(xi−μ∗)2σ^*=\sqrt{\frac{1}{N}\sum_{i=1}^{N}(x_i-μ^*)^2}σ∗=N1i=1∑N(xi−μ∗)2
标准化预处理函数
在sklearn库中,有对于特征的标准化函数
需要注意的是,此函数预处理的数据形式为:每行代表一个样本,每列代表一个特征(如鸢尾花数据集 iris.data),如果需要预处理的数据不是这种形式,则不能使用这个函数
对二维的鸢尾花数据集(iris.data)进行标准化预处理
from sklearn.preprocessing import StandardScaler
data = StandardScaler().fit_transform(iris.data)
对一维列表 data 进行标准化预处理
def std_pre(data):
import numpy as np
# 求出 data 的平均值
mean = np.mean(data)
# 求出 data 的标准差
std = np.std(data)
# 用 pre_data 来存储预处理之后的 data
pre_data = list()
# 对 data 进行预处理
for i in range(len(data)):
pre_data.append((data[i] - mean) / std)
return pre_data