python标准化预处理

为什么要进行标准化预处理?

一般用到距离的机器学习问题,都需要进行标准化预处理。

例如:在分类问题中,不同特征的数量级和量纲不同。如果一个特征的数量级很大,就可能会湮没其他特征对于分类决策的影响。

所以需要统一数量级和去量纲,使其变成均值为0、方差为1的数据。

标准化预处理公式:(x−mean)/std(x - mean) / std(xmean)/std,mean为均值,std为标准差

即数学中常见的: (x−μ)/σ(x-μ)/σ(xμ)/σ

对于一维数据期望和标准差的计算(假设样本数为N):

μ∗=1N∑i=1Nxiμ^*=\frac{1}{N}\sum_{i=1}^{N}x_iμ=N1i=1Nxi

σ∗=1N∑i=1N(xi−μ∗)2σ^*=\sqrt{\frac{1}{N}\sum_{i=1}^{N}(x_i-μ^*)^2}σ=N1i=1N(xiμ)2

标准化预处理函数

在sklearn库中,有对于特征的标准化函数

需要注意的是,此函数预处理的数据形式为:每行代表一个样本,每列代表一个特征(如鸢尾花数据集 iris.data),如果需要预处理的数据不是这种形式,则不能使用这个函数

对二维的鸢尾花数据集(iris.data)进行标准化预处理

from sklearn.preprocessing import StandardScaler
data = StandardScaler().fit_transform(iris.data)

对一维列表 data 进行标准化预处理

def std_pre(data):
	import numpy as np
	
	# 求出 data 的平均值
	mean = np.mean(data)
	# 求出 data 的标准差
	std = np.std(data)
	
	# 用 pre_data 来存储预处理之后的 data
	pre_data = list()
	# 对 data 进行预处理
	for i in range(len(data)):
	    pre_data.append((data[i] - mean) / std)
	
	return pre_data
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值