首先,先贴一下问题
题目描述
排列与组合是常用的数学方法,其中组合就是从n个元素中抽出r个元素(不分顺序且r < = n),我们可以简单地将n个元素理解为自然数1,2,…,n,从中任取r个数。
现要求你不用递归的方法输出所有组合。
例如n = 5 ,r = 3 ,所有组合为:
1 2 3
1 2 4
1 2 5
1 3 4
1 3 5
1 4 5
2 3 4
2 3 5
2 4 5
3 4 5
输入
一行两个自然数n、r ( 1 < n < 21,1 < = r < = n )。
输出
所有的组合,每一个组合占一行且其中的元素按由小到大的顺序排列,所有的组合也按字典顺序。
很简单的一道搜索题,基本上算是入门难度,需要注意的是元素是有顺序的,即后一个要比前一个大,这就跟全排列有了区别,做法也就有所差异了。
废话不多说,贴上ac代码。
#include<bits/stdc++.h>
using namespace std;
int a[21],b[21]={0},n,r;
void dfs(int step){
int i,j;
if(step==r+1){
for(i=1;i<=r;i++){
printf("%d ",a[i]);
}
printf("\n");
return;
}
for(i=a[step-1];i<=n;i++){//题目要求后一个数一定要比前一个大,如果不i=1;
if(b[i]==0){
b[i]=1;
a[step]=i;
dfs(step+1);
b[i]=0;
}
}
return;
}
int main(){
scanf("%d%d",&n,&r);
a[0]=1;
dfs(1);
return 0;
}
代码应该是非常好理解的们也就不多进行解释了,然后再贴一个不同的做法。
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#define N 30
using namespace std;
int n,r;
int a[N];
int vis[N];
void dfs(int step)
{
int i;
if(step==r+1)
{
for(i=1;i<=r;i++)
cout<<" "<<a[i];
cout<<endl;
return;
}
for(i=a[step-1];i<=n;i++)
{
if(vis[i]==0)
{
a[step]=i;
vis[i]=1;
dfs(step+1);
vis[i]=0;
}
}
}
int main()
{
cin>>n>>r;
a[0]=1;
dfs(1);
return 0;
}