(kuangbin带你飞--基础DP)Super Jumping! Jumping! Jumping! HDU 1087

本文介绍了一种求解最大上升子序列和的算法,通过动态规划方法,针对给定的棋子列表,找出从起点到终点路径中,棋子数值之和最大的路径。文章详细解释了状态转移方程,并提供了完整的C++代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原题目:

Nowadays, a kind of chess game called “Super Jumping! Jumping! Jumping!” is very popular in HDU. Maybe you are a good boy, and know little about this game, so I introduce it to you now.



The game can be played by two or more than two players. It consists of a chessboard(棋盘)and some chessmen(棋子), and all chessmen are marked by a positive integer or “start” or “end”. The player starts from start-point and must jumps into end-point finally. In the course of jumping, the player will visit the chessmen in the path, but everyone must jumps from one chessman to another absolutely bigger (you can assume start-point is a minimum and end-point is a maximum.). And all players cannot go backwards. One jumping can go from a chessman to next, also can go across many chessmen, and even you can straightly get to end-point from start-point. Of course you get zero point in this situation. A player is a winner if and only if he can get a bigger score according to his jumping solution. Note that your score comes from the sum of value on the chessmen in you jumping path.
Your task is to output the maximum value according to the given chessmen list.

Input

Input contains multiple test cases. Each test case is described in a line as follow:
N value_1 value_2 …value_N
It is guarantied that N is not more than 1000 and all value_i are in the range of 32-int.
A test case starting with 0 terminates the input and this test case is not to be processed.

Output

For each case, print the maximum according to rules, and one line one case.

Sample Input

3 1 3 2
4 1 2 3 4
4 3 3 2 1
0

Sample Output

4
10
3

中文概要:

求最大上升子序列的和

#include<iostream>
using namespace std;

const int maxn = 1005;
int n;
int a[maxn];
int dp[maxn];

int Dp()
{
	for(int i = 1;i <= n;i++)
	{
		if(i == 1)
			dp[i] = a[i];
		else if(i > 1)
		{
			int max_res = 0;
			for(int k = 1;k <= i - 1;k++)
			{
				if(a[k] < a[i])
				{
					if(dp[k] > max_res)
						max_res = dp[k];
				}
			}
			dp[i] = max_res + a[i];
		}
	}
	int max_r = 0;
	for(int i = 1;i <= n;i++)
	{
		if(dp[i] > max_r)
			max_r = dp[i];
	}
	return max_r;
}

void Clear()
{
	for(int i = 1;i <= n;i++)
		dp[i] = 0;
}

int main()
{
	while(scanf("%d", &n) && n != 0)
	{
		Clear();
		for(int i = 1;i <= n;i++)
		{
			cin >> a[i];
		}
		cout << Dp() << endl;
	}
	return 0;
}

思路:

看了老半天发现原来的思路不对,以前看这种DP问题的思路都错了,看懂才恍然大悟啊,真的想不出来,挺厉害的。

对于序列a : 1  3  2
它的各项dp值为:  1   4  3
最后我们只需要遍历一遍dp数组找到最大的那个dp值返回就是答案了!
然后我们来推状态转移方程,首先考虑边界条件,即i == 1的情况,也就是第一项你怎么赋值。我们分析发现第一项的最大递增子序列和肯定是等于自己的,所以dp[1] = a[1]。
然后再考虑i > 1的情况。经过分析,当i > 1时,它的dp[i]的取值和它前面几项的值都有着密切的关系。
对于序列: 3, 1, 5, 4, 6, 2, 3, 8
它的值为: 3 , 1, 6, 7, 13, 3, 6, 21, 1
我们发现dp[i]的值等于小于a[i]的值里面,dp值最大的那个加上a[i]。(这句话十分重要,是整道题的解决思路)!!!!!!
写专业点,状态方程就是 : dp[j]=max{dp[i]}+a[j]; 其中,0<=i<=j,a[i]<a[j]

等知道dp[]怎么来求的时候问题就不难了
 

 

### 关于 kuangbin ACM 算法竞赛培训计划 #### 数论基础专题介绍 “kuangbin”专题十四涵盖了数论基础知识的学习,旨在帮助参赛者掌握算法竞赛中常用的数论概念和技术。该系列不仅提供了丰富的理论讲解,还推荐了一本详细的书籍《算法竞赛中的初等数论》,这本书包含了ACM、OI以及MO所需的基础到高级的数论知识点[^1]。 #### 并查集应用实例 在另一个具体的例子中,“kuangbin”的第五个专题聚焦于并查集的应用。通过解决实际问题如病毒感染案例分析来加深理解。在这个场景下,给定一组学生及其所属的不同社团关系图,目标是从这些信息出发找出所有可能被传染的学生数目。此过程涉及到了如何高效管理和查询集合成员之间的连通性问题[^2]。 #### 搜索技巧提升指南 对于简单的搜索题目而言,在为期约两周的时间里完成了这一部分内容的学习;尽管看似容易,但对于更复杂的状况比如状态压缩或是路径重建等问题,则建议进一步加强训练以提高解题能力[^3]。 ```python def find_parent(parent, i): if parent[i] == i: return i return find_parent(parent, parent[i]) def union(parent, rank, x, y): rootX = find_parent(parent, x) rootY = find_parent(parent, y) if rootX != rootY: if rank[rootX] < rank[rootY]: parent[rootX] = rootY elif rank[rootX] > rank[rootY]: parent[rootY] = rootX else : parent[rootY] = rootX rank[rootX] += 1 # Example usage of Union-Find algorithm to solve the virus spread problem. ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值