PAT甲级题目1080 Graduate Admission

本文深入解析了一种用于高校招生的算法实现,通过学生综合成绩和志愿选择,结合学校招生名额,实现了公平有效的录取流程。文章详细展示了算法的代码实现,包括学生信息结构定义、排序比较函数、录取过程及最终结果输出。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

代码:

#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
struct peo{
    int id, ge, gi, fin;
    vector<int> choice;
};
bool cmp(peo& a, peo& b) {
    if (a.fin != b.fin) return a.fin > b.fin;
    return a.ge > b.ge;
}
bool cmp2(peo& a, peo& b) {
  return a.id < b.id;
}
int main(){
    int n, m, k, quota[110], cnt[110] = {0};
    scanf("%d%d%d", &n, &m, &k);
    vector<peo> stu(n), sch[110];
    for(int i = 0; i < m; i++)
        scanf("%d",&quota[i]);
    for(int i = 0; i < n; i++) {
        scanf("%d%d", &stu[i].ge, &stu[i].gi);
        stu[i].id = i;
        stu[i].fin = stu[i].ge + stu[i].gi;
        stu[i].choice.resize(k);
        for(int j = 0; j < k; j++)
            scanf("%d", &stu[i].choice[j]);
    }
    sort(stu.begin(), stu.end(), cmp);
    for(int i = 0; i < n; i++) {
        for(int j = 0; j < k; j++) {
            int schid = stu[i].choice[j];
            int lastindex = cnt[schid] - 1;
            if(cnt[schid] < quota[schid] || (stu[i].fin == sch[schid][lastindex].fin) && stu[i].ge == sch[schid][lastindex].ge) {
                sch[schid].push_back(stu[i]);
                cnt[schid]++;
                break;
            }
        }
    }
    for(int i = 0; i < m; i++) {
        sort(sch[i].begin(), sch[i].end(), cmp2);
        for(int j = 0; j < cnt[i]; j++) {
            if(j != 0) printf(" ");
            printf("%d", sch[i][j].id);
        }
        printf("\n");
    }
    return 0;
}
逻辑斯蒂回归(Logistic Regression)是一种常用的分类算法,常用于二分类问题中,如预测研究生能否被录取。Kaggle的Graduate Admission数据集包含了申请人的各项信息,例如GRE分数、TOEFL分数、大学GPA、科研经验、推荐信等,目标变量通常是“是否被录取”(是否被研究生院接受)。 首先,我们来理解数据集属性的意义: 1. GRE Score: 研究生入学考试成绩 2. TOEFL Score: 英语水平测试得分 3. University Rating: 学校排名 4. SOP: Statement of Purpose(个人陈述)的质量 5. LOR: Letter of Recommendation(推荐信)的质量 6. CGPA: 学术平均绩点 7. Research: 科研经历(0或1) 8. Chance of Admit: 录取概率(这个不是原始数据,而是我们最终需要预测的目标) 数据预处理步骤主要包括: 1. **加载数据**:使用pandas库读取csv文件并查看基本信息。 2. **缺失值处理**:检查是否存在缺失值,并选择填充、删除或估算策略。 3. **编码分类变量**:将类别型特征转换成数值型,如使用one-hot encoding或者LabelEncoder。 4. **标准化或归一化**:对于数值型特征,通常会做数据缩放,如Z-score标准化或min-max归一化。 5. **划分训练集和测试集**:通常采用80%的数据作为训练集,剩余的20%作为测试集。 6. **特征工程**:如果有必要,可以创建新的特征或调整现有特征。 逻辑斯蒂回归的预测原理是基于sigmoid函数,该函数将线性组合后的输入映射到0到1之间,表示事件发生的可能性。模型学习如何调整权重系数,使得给定输入条件下,正类(如录取)的概率最大化。 实现过程(Python示例,假设使用sklearn库): ```python import pandas as pd from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score # 1. 加载数据 data = pd.read_csv('Admission_Predict.csv') # 2. 数据预处理 # ... 缺失值处理、编码、标准化等操作 # 3. 划分特征和目标 X = data.drop('Chance of Admit', axis=1) y = data['Chance of Admit'] # 4. 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 5. 特征缩放 scaler = StandardScaler() X_train_scaled = scaler.fit_transform(X_train) X_test_scaled = scaler.transform(X_test) # 6. 创建模型并拟合 model = LogisticRegression() model.fit(X_train_scaled, y_train) # 7. 预测 y_pred = model.predict(X_test_scaled) # 8. 评估模型性能 accuracy = accuracy_score(y_test, y_pred) print(f"Accuracy: {accuracy}") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值