混沌映射分岔图

本文介绍了几种常见的混沌映射方法,包括Logistic映射、Sine映射等,并详细阐述了每种映射的数学定义及其参数范围。此外,还提供了进行仿真实验的代码下载链接。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、理论基础

1、Logistic映射

定义如下: x n + 1 = μ x n ( 1 − x n ) ,    0 < μ ≤ 4 ,    x n ∈ ( 0 , 1 ) (1) x_{n+1}=\mu x_n(1-x_n),\,\,0<\mu\leq4,\,\,x_n\in(0,1)\tag{1} xn+1=μxn(1xn),0<μ4,xn(0,1)(1)其中, x n x_n xn是第 n n n个混沌值, n n n表示迭代次数; μ μ μ是混沌因子, μ ∈ ( 0 , 4 ] μ\in(0,4] μ(0,4]

2、Sine映射

Sine映射是单峰映射,其定义如下: x n + 1 = α 4 sin ⁡ ( π x n ) ,    0 < α ≤ 4 (2) x_{n+1}=\frac\alpha4\sin(\pi x_n),\,\,0<\alpha\leq4\tag{2} xn+1=4αsin(πxn),0<α4(2)其中, α \alpha α是混沌参数, α ∈ ( 0 , 4 ] \alpha\in(0,4] α(0,4]

3、Neuron映射

Neuron映射是具有非线性反馈的混沌映射。该映射利用双曲正切函数和指数函数构造混沌映射,其定义如下: x n + 1 = η − 2 tanh ⁡ ( γ ) exp ⁡ ( − 3 x n 2 ) (3) x_{n+1}=\eta-2\tanh(\gamma)\exp(-3x_n^2)\tag{3} xn+1=η2tanh(γ)exp(3xn2)(3)其中, η \eta η表示衰减因子( 0 ≤ η ≤ 1 0\leq\eta\leq1 0η1); γ \gamma γ表示比例因子。

4、Tent映射

请参考这里

5、Chebyshev映射

Chebyshev映射是一种常见的对称区域映射。它通常用于神经网络、数字通信和安全问题。Chebyshev映射生成 ( − 1 , 1 ) (-1,1) (1,1)中的混沌序列。 其定义如下: x n + 1 = cos ⁡ ( λ ⋅ cos ⁡ − 1 x n ) (4) x_{n+1}=\cos(\lambda\cdot\cos^{-1}x_n)\tag{4} xn+1=cos(λcos1xn)(4)其中, λ \lambda λ表示混沌参数。

6、Cubic映射

Cubic映射是密码学等各种应用中产生混沌序列最常用的映射之一,其定义如下: x n + 1 = ρ x n ( 1 − x n 2 ) (5) x_{n+1}=\rho x_n(1-x_n^2)\tag{5} xn+1=ρxn(1xn2)(5)其中, ρ \rho ρ是映射因子。

7、ICMIC映射

迭代无限折叠混沌映射(ICMIC)在 ( − 1 , 1 ) (-1,1) (1,1)中生成混沌序列,其定义如下: x n + 1 = sin ⁡ ( α x n ) ,    α ∈ ( 0 , + ∞ ) ,    x n ∈ ( − 1 , 1 ) (6) x_{n+1}=\sin\left(\frac{\alpha}{x_n}\right),\,\,\alpha\in(0,+\infty),\,\,x_n\in(-1,1)\tag{6} xn+1=sin(xnα),α(0,+),xn(1,1)(6)或者: x n + 1 = sin ⁡ ( α π x n ) ,    α ∈ ( 0 , 1 ) ,    x n ∈ ( − 1 , 1 ) (7) x_{n+1}=\sin\left(\frac{\alpha\pi}{x_n}\right),\,\,\alpha\in(0,1),\,\,x_n\in(-1,1)\tag{7} xn+1=sin(xnαπ),α(0,1),xn(1,1)(7)

二、仿真实验

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
代码下载链接:https://download.csdn.net/download/weixin_43821559/85221680

三、参考文献

[1] Feng, J., Zhang, J., Zhu, X. et al. A novel chaos optimization algorithm[J]. Multimedia Tools and Applications, 2017, 76: 17405-17436.

Chebyshev混沌映射是一种常见的非线性动力系统,它展现了分岔现象。下面是使用Python编写的Chebyshev混沌映射分岔代码: ```python import numpy as np import matplotlib.pyplot as plt def chebyshev_map(x, a): return a*x**2 - 1.57*x def bifurcation_diagram(a_values, iterations): x = 0.1 x_values = [] a_list = [] for a in a_values: for _ in range(iterations): x = chebyshev_map(x, a) if _ > iterations / 2: x_values.append(x) a_list.append(a) return a_list, x_values # 设置参数值和迭代次数 a_values = np.linspace(-1.5, 1.5, 1000) iterations = 1000 # 绘制分岔 a_list, x_values = bifurcation_diagram(a_values, iterations) plt.scatter(a_list, x_values, s=0.01, c='black') plt.xlabel('a') plt.ylabel('x') plt.title('Chebyshev混沌映射分岔') plt.show() ``` 该代码首先定义了Chebyshev混沌映射的迭代函数`chebyshev_map`,其输入为x和a,输出为根据Chebyshev混沌映射公式计算得到的下一个x的值。 然后,定义了`bifurcation_diagram`函数,该函数使用给定的参数值范围和迭代次数,计算Chebyshev混沌映射分岔。在每次迭代过程中,通过检测迭代次数来筛选稳定状态,将稳定状态的x值和对应的a值保存到列表中。 最后,使用`np.linspace`生成参数值数组`a_values`,并调用`bifurcation_diagram`函数获得分岔数据。使用`plt.scatter`绘制分岔,并设置表标签和标题。 运行代码后,将得到Chebyshev混沌映射分岔,横坐标为参数a的值,纵坐标为系统状态x的值。该分岔显示了系统在不同参数范围下呈现出的稳定状态和混沌状态。
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

心️升明月

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值