PyTorch笔记 入门:写一个简单的神经网络1:Regression(回归)

本文介绍使用PyTorch构建并训练一个简单的三层神经网络的过程。包括网络的设计、初始化、前向传播等步骤,并通过自定义的数据集进行训练,展示loss变化及预测效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

注意:本文无理论和推导
相关视频:
[双语字幕]吴恩达深度学习deeplearning.ai
PyTorch 动态神经网络 (莫烦 Python 教学)

一、导入库、创造数据

在这里插入图片描述

二、基本格式

在这里插入图片描述

三、编写网络

1.设计网络

在这里插入图片描述

实现左边那个三层的简单网络
input layer的神经元个数:n_input
hidden layer的神经元个数:n_hidden
output layer的神经元个数:n_output

有些人又将n_input写为n_features

2.init(初始化)

在这里插入图片描述

3.forward

在这里插入图片描述

在这里插入图片描述

4.创建网络

在这里插入图片描述

5.优化器

在这里插入图片描述

6.训练网络

在这里插入图片描述

7.画出loss的图像

在这里插入图片描述

8.预测

在这里插入图片描述

四、完整代码

import torch
import torch.nn.functional as F
from torch.autograd import Variable
import matplotlib.pyplot as plt

# 自己创建的网路
class Net(torch.nn.Module):
    def __init__(self, n_input, n_hidden, n_output):
        super(Net, self).__init__()
        self.hidden_layer = torch.nn.Linear(n_input, n_hidden)
        self.output_layer = torch.nn.Linear(n_hidden, n_output)
    
    def forward(self, x):
        x = F.relu(self.hidden_layer(x))
        x = self.output_layer(x)
        return x

# 创造数据
x = torch.unsqueeze(torch.linspace(-1,1,100), dim=1)
print(x.shape)

y = torch.pow(x, 2) + 0.2 * torch.rand(x.size())
print(y.shape)

plt.scatter(x.data.numpy(), y.data.numpy())
plt.show()

x, y = Variable(x), Variable(y)

# 创建网络
net = Net(1, 10, 1)
print(net)

# 优化器
optimizer = torch.optim.SGD(net.parameters(), lr=0.5)
# 损失函数
loss_func = torch.nn.MSELoss() # Mean Square Error Loss

# 训练
losses = []
for i in range(100):
    # 计算loss
    predict = net(x)
    loss = loss_func(predict, y)
    # 训练优化
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
    # 每训练5次输出一次loss
    if i%5 == 0:
        print(loss.data.item())
        losses.append(loss.data.item())
        
# 画出loss的图像
plt.plot(range(len(losses)), losses)
plt.xlabel('epoch')
plt.ylabel('loss')
plt.xticks(range(0,20,2))
plt.show()

# 预测
test = torch.tensor([[1.1], [1.2], [1.3], [1.4], [1.5]])
print(test)

result = net(test)
print(result)

# 实际与预测的差距
real = torch.pow(test, 2)
print(real)

print(real - result)
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值