G - Research Productivity Index ( 数学期望 + DP )

本文探讨了一道关于G-Research生产力指数的问题,通过动态规划算法求解最大期望值,详细介绍了状态转移方程及代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

G - Research Productivity Index ( 数学期望 )

题意:小明手里有n份代码,每一份代码都有一个ac成功率。f值等于a^{a/b},其中a为ac的数量,b为总提交数,比如交了5份4份ac,   f = 4^{4/5}≈3.031433   , 最后问交几份怎么交期望值最大。

Sample Input :

5
30 50 70 60 90

Sample Output

2.220889579

分析:自己还是对于期望的理解不够深刻,期望=当前情况的概率 * f值, 其中f的值代数的时候肯定都是整数的!!比赛时想错了直接把算出来的概率值往f里带,怎么也算不出来。

思路:dp[ i ] [ j ] 表示取前 i 个交上, 其中有j个ac的概率。状态迁移方程是dp[ i ] [ j ] = dp[ i-1 ] [ j ] * ( 1 - a[i] ) +              dp[ i-1 ] [ j-1 ] * a[ i ];

优先取ac概率大的,for循环1~n取最大值。

代码:

#include <bits/stdc++.h>

using namespace std;

int n;
double tot,now;
double a[105];
double dp[102][102]; // 交前i个,j个ac.

int main()
{
    cin >> n;
    for ( int i=1; i<=n; i++ ) {
        int x;
        scanf("%d",&x);
        a[i] = x*0.01;
    }
    sort(a+1,a+n+1,greater<double>());
    dp[0][0] = 1;
    double ans = 0;
    for ( int i=1; i<=n; i++ ) {
        dp[i][0] = dp[i-1][0]*(1-a[i]);
        for ( int j=1; j<=i; j++ ) {
            dp[i][j] = dp[i-1][j]*(1-a[i]) + dp[i-1][j-1]*a[i];
        }
        double now = 0;
        for ( int j=1; j<=i; j++ ) {
            now += dp[i][j]*pow(j,1.0*j/i);
        }
        ans = max(ans,now);
    }
    printf("%.9f\n",ans);

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值