
深度学习
文章平均质量分 72
九羽-
日有所进,月有所变,终有所成。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
GAN基础知识及代码
输入是长度100的噪声z(正态分布随机数)输出为(1,28,28)的图片,和MNIST数据集保持一致28super(Generator, self).__init__() # 继承父类nn.Tanh() # 最后必须用tanh,把数据分布到(-1,1)之间)def forward(self, x): # x表示长度为100的噪声输入img = img.view(-1,28,28,1) # 方便等会绘图输入为(1,28,28)的mnist图片。原创 2022-09-25 15:15:19 · 5587 阅读 · 7 评论 -
kaggle比赛:CIFAR-10
最近发现kaggle每周给了30小时的GPU额度,直接使用在线jupyter notebook,非常方便。以后就直接在kaggle上练习了。比赛地址:CIFAR-10 - Object Recognition in Images | Kaggle因为是kaggle官方比赛的数据,所以在Competition Data里直接能搜出来,添加后就到input里了。小tip:/kaggle/input 路径为只读路径如果想写入数据,只能放到/kaggle/working 路径下 然后发现这里给的数据是一个zip压缩原创 2022-07-07 13:27:14 · 2095 阅读 · 0 评论 -
第一次实战Kaggle比赛:预测房价
整理自《动手学深度学习》翻译 2022-06-09 20:28:11 · 1327 阅读 · 0 评论 -
多层感知机的简洁实现【动手学深度学习】
整理自:《动手学深度学习》 在softmax的基础上加入了一个隐藏层,使得函数更加复杂,能够拟合一些非线性的数据。 隐藏层后紧跟着一层激活函数,是为了防止多层模型退化为线性模型。 此章的数据集获取、训练函数继承自上一章:softmax回归的简洁实现【动手学深度学习】_九羽-的博客-CSDN博客 1. 获取数据集 import torch from torch import nn from d2l import torch as d2l batch_size = 256 train_iter.翻译 2022-05-29 09:38:38 · 208 阅读 · 0 评论 -
softmax回归的简洁实现【动手学深度学习】
整理自:《动手学深度学习》 import numpy as np import torch,torchvision from torch.utils import data from torchvision import transforms 1. 获取数据集 使用torchvision库自带的经典数据集Fashion-MNST。下载后将其加载到内存中。 通过ToTensor实例将图像数据从PIL类型变换成32位浮点数格式,并除以255使得所有像素的数值均在0到1之间。 def load_.翻译 2022-05-27 10:11:36 · 448 阅读 · 0 评论 -
线性回归的简洁实现【动手学深度学习】
整理自:《动手学深度学习》 线性模型 y = Xw + b, x是二维的 1. 生成数据集 import numpy as np import torch from torch.utils import data from d2l import torch as d2l true_w = torch.tensor([2,-3.4]) true_b = 4.2 features,labels = d2l.synthetic_data(true_w,true_b,1000) 2. 读取数据集 .翻译 2022-05-23 20:30:47 · 128 阅读 · 0 评论