洛谷P3368 【模板】树状数组 2(Python和C++代码)

本文介绍了树状数组的原理及其在区间修改和查询中的应用。通过维护差分数组的前缀和,可以高效地进行区间操作。树状数组的每个节点存储从该位置到某个二进制位的和,通过计算二进制末尾0的个数确定范围。文章还提到了计算二进制末尾0的方法,并强调理解其实现比理论更重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述

##就是常规写法 用树状数组维护一个差分数组的前缀和,因为可推得若b[i]=a[i]-a[i-1],则a[i]=b[1]+…+b[i] (b[1]=a[1]-a[0],a[0]=0) 。 可发现a[i]只与b[j] (j<=i)有关,若将b[j]加上delta,其后所有值都将加dlt,因此只需改变b[i]就可实现b[i]到b[n]的区间修改。而将b[j+1]减去dlt,对a[j]无影响,其后所有值也减去dlt,恢复原值,即实现了区间修改操作。 因为求取a值用到的是前缀和,因此设t[i]为b[1]到b[i]的前缀和,a[i]=t[i]=b[1]+…b[i],即可大大降低时间复杂度。

#include <iostream>
#include <cstdio>
#include <algorithm>
using namespace std;
#define N 530000
long 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

理想不闪火

你的鼓励将是我最大的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值