# 1. 创建一个名为sts的conda虚拟环境
conda create -n sts python=3.8
# 2. 激活虚拟环境,你要激活虚拟环境,然后再安装cudatoolkit和cudnn!
conda activate sts
# 3. 搜索一下自己的linux服务器上可以安装什么版本的cudatoolkit和cudnn
conda search cudatoolkit --info
# 4. wget 你要下载的版本的url,进行下载,注意下载到你想要的文件夹下面
# 注意哈,一定要下载你conda search 显示出来的,不要直接复制我写出来的,因为我写出来的但是不在你的conda search里面的可能不适合你的linux平台
wget https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/linux-64/cudatoolkit-11.3.1-hb98b00a_13.conda
我想安装11.3版本的cudatoolkit,那我就找一找,找到后,复制里面的url
# 5. 同cudatoolkit,查看cudnn的版本
conda search cudnn --info
# 6. wget 你要下载的url,注意查看cudnn依赖的cudatookit是否匹配
# 下图显示dependencies: cudatoolkit>=11.3,<11.4,所以我前面下载的cudatoolkit=11.3.1是符合要求的
wget https://repo.anaconda.com/pkgs/main/linux-64/cudnn-8.2.1-cuda11.3_0.tar.bz2
# 7. 安装下载好的cudatoolkit,注意要在你的虚拟环境里面安装!
conda install --use-local cudatoolkit-11.3.1-h9edb442_11.conda
# 8. 同上,安装下载好的cudnn
conda install --use-local 你下载好的cudnn安装包
# 9. 测试是否安装成功
# 在虚拟环境中安装完cuda和cudnn想要测试是否安装成功,不能使用nvcc -V命令测试,需要在虚拟环境中安装pytorch包进行测试
# 先安装pytorch,首先安装与cuda相匹配的pytorch和torchvision包,可以去pytorch官网查询。
pip install torch==1.12.1+cu113 torchvision==0.13.1+cu113 torchaudio==0.12.1 --extra-index-url https://download.pytorch.org/whl/cu113
# 在终端输入 python
>>> import torch
>>> print(torch.version.cuda)
11.3
>>> print(torch.backends.cudnn.version())
8302