随想录训练营37/60 | LC 1049. 最后一块石头的重量 II;LC 494. 目标和;LC 474.一和零

文章讲述了如何使用动态规划方法解决三道编程题,包括LC1049.最后一块石头的重量II,目标是找到两组石头使它们的重量差最小;LC494.目标和,要求找到数组中加减操作达到特定和的方式数;以及LC474.一和零,求解在限制条件下的最大子集个数。这些问题的核心是通过一维或二维动态规划数组进行优化求解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

LC 1049. 最后一块石头的重量 II

题目链接LC 1049. 最后一块石头的重量 II
思路:和分割等和子集很像,都是将数组分成两组,让这两组数之和的差尽可能的小。
代码

class Solution {
public:
    //本质就是将石头分成两组,两组互相抵消,得到最小的重量
    //与上一章节的分割等子集类似,都是将数组分成尽可能相似的两组
    int lastStoneWeightII(vector<int>& stones) {
        int sum = 0;
        for(int a : stones){
            sum += a;
        }
        int target = sum/2;//只需下取整,得到的值都是比较小的,最后让sum-target得到的值*2,即可
        vector<int> dp(target+1);//使用一维dp数组
        //dp数组的[i][j]表示在从0-i中选容量最大为j的物品的价值(价值和重量相同,但是不一定能沾满背包)
        //dp数组初始化
        for(int b=0; b<dp.size(); b++){
            if(b>=stones[0])dp[b] = stones[0];
            else dp[b] = 0;
        }
        //更新数组
        for(int i=1; i<stones.size(); i++){
            for(int j=dp.size()-1; j>=stones[i]; j--){
                dp[j] = max(dp[j], dp[j-stones[i]]+stones[i]); 
            }
        }
        int result = sum - dp.back() - dp.back();
        return result;
    }
};

LC 494. 目标和

题目链接LC 494. 目标和
思路:先按着二维的dp数组进行推导。然后转化为一维数组。主要思路就是,将数组分成两部分,一部分是加,一部分是减,加和减能通过输入确定下来,然后只需选加的部分有几种情况就可以。
代码

class Solution {
public:
    //按照背包的思路解
    //将数组分成两组:一组是加的,一组是减的,jia—jian = target
    //jia+jain = sum,其中sum和target是已知的,所以jia = (target+sum)/2
    int findTargetSumWays(vector<int>& nums, int target) {
        int sum = 0;
        for(int a:nums){
            sum += a;
        }
        int x = target + sum;
        if(x%2 == 1)return 0;//当x是奇数的时候,直接返回
        x = x/2;
        if(abs(target)>sum)return 0;//当target太大或者太小时,就直接返回
        //将不能满足的情况删除后,就判断多少组合之和为x
        //dp纵坐标含义为子数组组合之和,dp内的值表示可通过之前的值组合得到列值的个数
        vector<int> dp(x+1, 0);
        //初始化dp
        dp[0] = 1;//子数组之和为0,就一种情况所有的都不选
        //更新dp
        for(int i=0; i<nums.size(); i++){
            for(int j=dp.size()-1; j>=nums[i]; j--){
                dp[j] = dp[j]+dp[j-nums[i]];
            }
        }
        return dp.back();

    }
};

LC 474.一和零

题目链接LC 474.一和零
思路:之前是一维的滚动数组,这道题有两个约束,所以用二维滚动数组,数组内的值表示最大的子集数量,当加入一个新字符串时,判断子集上次或者加这次之后,哪个子集长一些,哪个长就选择哪个。
代码

class Solution {
public:
    int findMaxForm(vector<string>& strs, int m, int n) {
        vector<vector<int>> dp(m+1, vector<int>(n+1));//二维dp数组,值为最大的子集个数
        for(string s:strs){
            //判断每个字符串有多少0和1
            int zero = 0;
            int one = 0;
            for(char c : s){
                if(c=='0')zero++;
                if(c=='1')one++;
            }
            for(int i=dp.size()-1; i>=zero; i--){//m
                for(int j=dp[0].size()-1; j>=one; j--){//n
                    dp[i][j] = max(dp[i][j], dp[i-zero][j-one]+1);
                }
            }
        }
        return dp[m][n];
    }
};
### 代码随想录训练营37期介绍 #### 报名方式 对于希望参与代码随想录训练营37期的学习者而言,报名流程相对简便。通常情况下,可以通过官方网站或官方指定的合作平台完成注册并支付费用以获得参加资格。此外,在线填写个人信息表单也是必不可少的部分,这有助于主办方更好地了解学员背景以便提供个性化指导支持[^2]。 #### 课程内容概述 该训练营旨在帮助参与者深入理解算法设计的核心概念技术,并通过实战练习提高编程能力。具体来说: - **基础巩固阶段**:此部分专注于夯实数据结构基础知识,如数组、链表、栈队列等基本操作及其应用场景;同时也会涉及些简单而常见的算法模式,比如贪心法、回溯法等。 - **专题强化模块** - 对于像二分查找这样的经典问题进行了细致讲解[L.C.704],不仅限于标准实现方法的教学,更鼓励探索多种可能的解决方案来拓宽思维视野; - 针对动态规划这类较难掌握的内容,则会采用由浅入深的方式逐步引导学生构建起完整的理论框架,并配合大量实例演练加深记忆点; - 还有图论方面的重要知识点覆盖,包括但不限于最短路径计算、最小生成树求解等内容。 - **项目实践环节** 为了使所学知识能够真正转化为实际工作中的生产力,特别设置了基于真实场景下的综合型开发任务作为结业考核之。这些项目往往围绕当下热门领域展开,例如人工智能、大数据处理等前沿方向,让每位成员都能亲身体验到从构思创意到最后产品发布的全过程。 ```python def binary_search(nums, target): left, right = 0, len(nums) - 1 while left <= right: mid = (left + right) // 2 if nums[mid] < target: left = mid + 1 elif nums[mid] > target: right = mid - 1 else: return mid return -1 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值