随想录训练营38/60 | 完全背包;LC 518. 零钱兑换 II;LC 377. 组合总和 Ⅳ

文章介绍了完全背包的概念,它与01背包的区别在于可以无限次使用某个物品。完全背包在二维动态规划数组的迭代更新中表现为从左上角和包括本行的左边数组更新。文中通过两个LeetCode问题——LC518.零钱兑换II和LC377.组合总和Ⅳ,展示了完全背包的应用,这两个问题都涉及动态规划,但遍历顺序不同,一个是先遍历物品再遍历背包,另一个则是先遍历背包再遍历物品。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

完全背包

什么是完全背包?
完全背包和01背包的区别就是,完全背包能将某个物品添加无数次。
在二维dp数组迭代更新中体现为:
01背包dp数组由左上面的数组更新而成;
完全背包do数组由包括本行在内的左边的数组更新而成。
在一维dp数组迭代更新中体现为:
01背包是从后向前遍历;
完全背包是从前向后遍历。

LC 518. 零钱兑换 II

题目链接LC 518. 零钱兑换 II
思路:完全背包问题,dp二维数组每一行是不用面额的硬币, 每一列是金额,dp数组内的值为有多少种方式得到该总金额(用该行和该行以上的硬币)。
代码

class Solution {
public:
    int change(int amount, vector<int>& coins) {
        //创建dp数组
        vector<int> dp(amount+1, 0);
        dp[0] = 1;
        for(int i=0; i<coins.size(); i++){
            for(int j=coins[i]; j<amount+1; j++){
                dp[j] = dp[j-coins[i]] + dp[j];
            }
        }
        return dp.back();
    }
};

LC 377. 组合总和 Ⅳ

题目链接LC 377. 组合总和 Ⅳ
思路:要注意顺序不同的也被视为不同的序列。上一题为组合问题,本题为排列问题。都是完全背包问题,但是这两道题的遍历顺序不同。上一题遍历顺序是先遍历物品再遍历背包,本题的遍历顺序为先遍历背包再遍历物品。
代码

class Solution {
public:
    int combinationSum4(vector<int>& nums, int target) {
        vector<int> dp(target+1, 0);
        dp[0] = 1;
        for(int i=1; i<target+1; i++){//先遍历背包
            for(int j=0; j<nums.size(); j++){//再遍历物品
                if(i-nums[j]>=0&&dp[i]<INT_MAX-dp[i-nums[j]]){//后面是防止两数相加过大
                    dp[i] += dp[i-nums[j]];
                }
            }
        }
        return dp.back();
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值