目录
数据清洗与预处理是数据分析中的关键步骤,其目的是确保数据的质量,提高数据分析的准确性和可靠性。Pandas 是 Python 中非常流行的数据处理库,提供了丰富的数据清洗与预处理功能。本文将详细介绍 Pandas 在数据清洗与预处理中的应用,并通过代码和案例帮助新手朋友理解和掌握这些技巧。
一、数据清洗与预处理的重要性
在数据分析过程中,数据清洗与预处理占据了大部分时间。数据通常来源于多个不同的数据源,存在以下问题:
- 缺失值:数据集中可能存在缺失值,需要填充或删除。
- 重复值:数据集中可能存在重复的记录,需要删除。
- 异常值:数据集中可能存在异常值(离群值),需要处理。
- 数据类型不一致:数据集中的列可能包含不同类型的数据,需要统一数据类型。
- 数据格式不一致:数据集中的日期、时间、字符串等格式可能不一致,需要规范化。
通过数据清洗与预处理,可以确保数据的一致性和准确性,为后续的