【YOLO系列】模型演进概述:从yolov1到yolov12的模型进化全解析

本文汇总了YOLO系列目标检测算法的多个版本,包括YOLOV1至YOLOV4,以及各种改进和优化版本如SlimYOLOv3、DIou_YOLOV3等。提供了各版本的论文链接和代码地址,便于研究者和开发者深入了解和实践。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【YOLO系列】YOLOv1详解:模型结构、损失函数、训练方法及代码实现

【YOLO系列】YOLOv2详解:模型结构、损失函数、训练方法及代码实现

【YOLO系列】YOLOv3详解:模型结构、损失函数、训练方法及代码实现

【YOLO系列】YOLOv4详解:模型结构、损失函数、训练方法及代码实现

【YOLO系列】YOLOv5详解:模型结构、损失函数、训练方法及代码实现

【YOLO系列】YOLOv6详解:模型结构、损失函数、训练方法及代码实现

【YOLO系列】YOLOv7详解:模型结构、损失函数、训练方法及代码实现

【YOLO系列】YOLOv8详解:模型结构、损失函数、训练方法及代码实现

【YOLO系列】YOLOv9详解:模型结构、损失函数、训练方法及代码实现

【YOLO系列】YOLOv10详解:模型结构、损失函数、训练方法及代码实现

【YOLO系列】YOLOv11详解:模型结构、损失函数、训练方法及代码实现

【YOLO系列】YOLOv12详解:模型结构、损失函数、训练方法及代码实现

YOLO系列演进:从yolov1到yolov12的模型进化简介

引言

YOLO(You Only Look Once)系列开创了单阶段目标检测的先河,其核心思想是将检测任务转化为单次回归问题。本文系统梳理从YOLOv1(2016)到YOLOv10(2024)的演进脉络,涵盖模型结构创新、关键技术突破和实验效果对比。


模型演进与技术突破

1. YOLOv1 (2016)
  • 核心结构:24层卷积+2层全连接层,输出 7 × 7 × 30 7\times7\times30 7×7×30张量
  • 创新点
    • 首次提出"单次检测"框架
    • 网格划分策略:将图像分为 S × S S\times S S×S网格
  • 局限
    • 定位精度低:每个网格仅预测2个边界框
    • 小目标检测差:特征分辨率不足
  • 实验效果:VOC2007 mAP 63.4%,实时性45 FPS
2. YOLOv2 (2017)
  • 结构升级:Darknet-19骨干网络
  • 关键技术
    • 锚框机制(Anchor Boxes)
    • 批量归一化(BatchNorm)
    • 高分辨率微调
  • 实验效果:VOC2007 mAP跃升至76.8%,速度67 FPS
3. YOLOv3 (2018)
  • 里程碑设计
    • 多尺度预测: 13 × 13 13\times13 13×13 26 × 26 26\times26 26×26 52 × 52 52\times52 52×52三尺度特征图
    • Darknet-53骨干(含残差连接)
    • 二分类交叉熵损失函数
  • 实验效果:COCO AP 33.0%,保持实时性
4. YOLOv4 (2020)
  • 结构创新
    CSPDarknet53
    SPP模块
    PANet
    YOLO Head
  • 关键技术
    • Mosaic数据增强
    • CIoU损失函数: L C I o U = 1 − I o U + ρ 2 ( b , b g t ) c 2 + α v \mathcal{L}_{CIoU} = 1 - IoU + \frac{\rho^2(b,b^{gt})}{c^2} + \alpha v LCIoU=1IoU+c2ρ2(b,bgt)+αv
    • 自对抗训练(SAT)
  • 实验效果:COCO AP 43.5%,Tesla V100 65 FPS
5. YOLOv5 (2020)
  • 工程突破
    • PyTorch框架实现
    • 自适应锚框计算
    • 超参数自动进化
  • 结构优化
    • Focus模块(空间压缩)
    • CSP跨阶段网络
  • 实验效果:COCO AP 55.0%,训练速度提升3倍
6. YOLOv6 (2022)
  • 工业级优化
    • Anchor-free设计
    • 重参数化卷积(RepConv)
    • SimOTA标签分配
  • 实验效果:T4 GPU 1234 FPS,COCO AP 52.8%
7. YOLOv7 (2022)
  • 结构创新
    • E-ELAN扩展高效层聚合
    • 模型缩放技术: ϕ = α ⋅ d e p t h + β ⋅ w i d t h + γ ⋅ r e s o l u t i o n \phi = \alpha \cdot depth + \beta \cdot width + \gamma \cdot resolution ϕ=αdepth+βwidth+γresolution
    • 辅助监督头
  • 实验效果:COCO AP 56.8%,超越所有实时检测器
8. YOLOv8 (2023)
  • 范式革新
    • 任务解耦头(分类/检测分离)
    • C2f模块(跨阶段部分瓶颈)
    • Distribution Focal Loss
  • 实验效果:COCO AP 53.9%,参数量减少40%
9. YOLOv9 (2024)
  • 理论突破
    • 可编程梯度信息(PGI)
    • 通用高效层聚合网络(GELAN)
  • 实验效果:COCO AP 63.0%,信息瓶颈问题显著改善
10. YOLOv10 (2024)
  • 最新进展
    • 无NMS设计(一致性双重分配)
    • 空间-通道解耦下采样
    • 轻量级分类头
  • 实验效果:端到端延迟降低46%,COCO AP 56.8%

关键演进趋势

  1. 精度提升:mAP从v1的63.4%提升至v9的63.0%
  2. 速度进化:推理速度从45 FPS(v1)到1234 FPS(v6)
  3. 结构创新
    • 骨干网络:Darknet → CSPDarknet → GELAN
    • 检测头:耦合头 → 解耦头 → 无NMS头
  4. 训练革命
    • 损失函数:MSE → IoU → CIoU
    • 数据增强:Flip → Mosaic → MixUp

实验效果对比

版本COCO AP速度(FPS)参数量(M)关键创新
v133.0%4526单阶段检测
v333.0%6262多尺度预测
v443.5%6564SPP+PANet
v756.8%16137E-ELAN结构
v1056.8%2386.3无NMS设计

注:测试环境为Tesla V100,输入分辨率640×640


总结

YOLO系列通过持续创新实现三重突破:

  1. 精度突破:从v1到v9,AP提升近30个百分点
  2. 效率革命:端到端延迟降低46%(v10)
  3. 工程优化:训练成本下降80%(v5自动超参)

未来方向将聚焦三维检测、视频理解等场景,其"简单高效"的设计哲学仍将引领目标检测发展。

参考文献
Redmon et al. (2016), Bochkovskiy et al. (2020), Wang et al. (2022), Ultralytics YOLOv8 Docs, YOLOv10 Technical Report (2024)

其他yolo相关的文章还有如下,需要自取哈:

《SlimYOLOv3》

论文链接:arxiv.org/abs/1907.11093.
代码链接:https://github.com/PengyiZhang/SlimYOLOv3

《YOLOV3-model-pruning》

代码链接:https://github.com/Lam1360/YOLOv3-model-pruning

《Gaussian_YOLOv3》顶会ICCV2019

论文地址:https://arxiv.org/abs/1904.04620
代码地址:https://github.com/jwchoi384/Gaussian_YOLOv3

《YOLO_Nano》

论文地址:https://arxiv.org/abs/1910.01271

《DIou_YOLOV3》 顶会AAAI2020

论文地址:https://arxiv.org/pdf/1911.08287.pdf
代码地址:https://github.com/Zzh-tju/DIoU-darknet

《GloU_YOLOv3》顶会CVPR2019

论文原文:https://arxiv.org/abs/1902.09630
代码地址:https://github.com/generalized-iou/g-darknet
AlexAB版:https://github.com/AlexeyAB/darknet/blob/master/cfg/yolov3.coco-giou-12.cfg

《X_YOLO》

论文地址:https://arxiv.xilesou.top/pdf/1910.03159.pdf

《yolov3-channel-and-layer-pruning》

代码地址:https://github.com/tanluren/yolov3-channel-and-layer-pruning

《YOLOv3-complete-pruning》

代码地址:https://github.com/coldlarry/YOLOv3-complete-pruning

《YOLOV3_PyTorch》

代码地址:https://github.com/ultralytics/yolov3

《YOLO_6D》

代码地址:https://github.com/Mmmofan/YOLO_6D

《YOLOv3_Darknet》

论文地址:https://pjreddie.com/media/files/papers/YOLOv3.pdf
代码地址:https://pjreddie.com/darknet/
含完全教程代码地址:https://github.com/Eric3911/Dakrnet-YOLOv3

《YOLOV3_Windows》

代码地址:https://github.com/AlexeyAB/darknet

《YOLOV3_Keras》

代码地址:https://github.com/Eric3911/yolov3-keras-master

《YOLOV3_Mobilenet》

代码地址:https://github.com/Eric3911/YOLOv3-Mobilenet

《Spiking-YOLO》

https://arxiv.org/pdf/1903.06530.pdf
https://github.com/dinies/SpikingCNN

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

一碗白开水一

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值