研究背景与意义
鲸鱼作为海洋生态系统的重要组成部分,其生存状态和种群数量的变化直接影响着海洋生态的健康与平衡。近年来,随着全球气候变化和人类活动的加剧,鲸鱼的栖息地遭到严重威胁,导致其数量急剧下降。因此,开展对鲸鱼的监测与保护工作显得尤为重要。传统的鲸鱼监测方法往往依赖于人工观察和记录,效率低下且容易受到人为因素的影响。随着计算机视觉技术的快速发展,基于深度学习的图像处理方法为鲸鱼的自动识别与监测提供了新的可能性。
在众多计算机视觉技术中,实例分割作为一种精细化的图像分析方法,能够对图像中的每一个对象进行精确的分割与识别,尤其适用于复杂背景下的物体检测。YOLO(You Only Look Once)系列模型因其高效性和准确性,成为实例分割领域的热门选择。YOLOv11作为该系列的最新版本,具备更强的特征提取能力和更快的推理速度,为鲸鱼的实例分割提供了良好的技术基础。
本研究旨在基于改进的YOLOv11模型,构建一个高效的鲸鱼实例分割系统。通过对包含3800张鲸鱼图像的数据集进行训练与测试,我们希望能够实现对鲸鱼个体的准确识别与分割,从而为鲸鱼的保护和管理提供科学依据。此外,该系统的成功应用不仅能够提升鲸鱼监测的效率,还能为其他海洋生物的监测与保护提供借鉴,推动海洋生态保护的研究进程。通过这一研究,我们期望能够为海洋生态保护贡献一份力量,同时为计算机视觉技术在生物监测领域的应用开辟新的方向。
图片演示
数据集信息展示
本项目数据集信息介绍
本项目所使用的数据集专注于鲸鱼实例分割任务,旨在改进YOLOv11模型的性能,以实现更高效的鲸鱼检测与分割。数据集中包含了丰富的鲸鱼图像,所有图像均经过精心挑选和标注,以确保数据的质量和多样性。该数据集的类别数量为1,专注于鲸鱼这一特定对象,类别名称为“whale”。这一单一类别的选择,旨在深入研究鲸鱼的特征和形态,提升模型在该类对象上的识别精度。
数据集中的图像涵盖了不同种类的鲸鱼及其栖息环境,展示了鲸鱼在自然状态下的多样性,包括不同的姿态、光照条件和背景环境。这种多样性不仅有助于模型学习鲸鱼的不同外观特征,还能增强模型在实际应用中的鲁棒性。此外,数据集中还包含了鲸鱼在水下和水面不同角度的图像,提供了丰富的上下文信息,帮助模型更好地理解鲸鱼的行为和位置。
为了确保数据集的有效性,所有图像均经过专业的标注流程,确保每一只鲸鱼都被准确地框定和标记。这种精确的标注为训练改进YOLOv11模型提供了坚实的基础,使其能够在实例分割任务中实现更高的准确率和召回率。通过对这一数据集的深入分析和应用,我们期望能够推动鲸鱼保护研究的发展,并为相关领域的科学研究提供有力支持。
项目核心源码讲解(再也不用担心看不懂代码逻辑)
以下是代码中最核心的部分,并附上详细的中文注释:
import torch
import torch.nn as nn
import torch.nn.functional as F
class DyReLU(nn.Module):
“”"
动态ReLU激活函数模块,支持根据输入动态调整激活值。
“”"
def __init__(self, inp, reduction=4, lambda_a=1.0, K2=True, use_bias=True, use_spatial=False,
init_a=[1.0, 0.0], init_b=[0.0, 0.0]):
super(DyReLU, self).__init__()
self.oup = inp # 输出通道数
self.lambda_a = lambda_a * 2 # 动态调整参数
self.K2 = K2 # 是否使用K2
self.avg_pool = nn.AdaptiveAvgPool2d(1) # 自适应平均池化层
self.use_bias = use_bias # 是否使用偏置
# 根据是否使用偏置和K2决定exp的值
self.exp = 4 if use_bias else 2 if K2 else 2 if use_bias else 1
self.init_a = init_a # 初始化参数a
self.init_b = init_b # 初始化参数b
# 确定压缩比
squeeze = inp // reduction if reduction == 4 else _make_divisible(inp // reduction, 4)
# 定义全连接层
self.fc = nn.Sequential(
nn.Linear(inp, squeeze), # 输入到压缩层
nn.ReLU(inplace=True), # ReLU激活
nn.Linear(squeeze, self.oup * self.exp), # 压缩层到输出层
h_sigmoid() # 使用h_sigmoid激活
)
# 如果使用空间注意力,则定义相应的卷积层
self.spa = nn.Sequential(
nn.Conv2d(inp, 1, kernel_size=1),
nn.BatchNorm2d(1),
) if use_spatial else None
def forward(self, x):
"""
前向传播函数。
"""
# 处理输入,支持列表输入
x_in = x[0] if isinstance(x, list) else x
x_out = x[1] if isinstance(x, list) else x
b, c, h, w = x_in.size() # 获取输入的尺寸
y = self.avg_pool(x_in).view(b, c) # 自适应平均池化并调整形状
y = self.fc(y).view(b, self.oup * self.exp, 1, 1) # 通过全连接层并调整形状
# 根据exp的值计算输出
if self.exp == 4:
a1, b1, a2, b2 = torch.split(y, self.oup, dim=1) # 分割输出
a1 = (a1 - 0.5) * self.lambda_a + self.init_a[0] # 动态调整a1
a2 = (a2 - 0.5) * self.lambda_a + self.init_a[1] # 动态调整a2
b1 = b1 - 0.5 + self.init_b[0] # 动态调整b1
b2 = b2 - 0.5 + self.init_b[1] # 动态调整b2
out = torch.max(x_out * a1 + b1, x_out * a2 + b2) # 计算输出
elif self.exp == 2:
if self.use_bias: # 使用偏置
a1, b1 = torch.split(y, self.oup, dim=1)
a1 = (a1 - 0.5) * self.lambda_a + self.init_a[0]
b1 = b1 - 0.5 + self.init_b[0]
out = x_out * a1 + b1 # 计算输出
else: # 不使用偏置
a1, a2 = torch.split(y, self.oup, dim=1)
a1 = (a1 - 0.5) * self.lambda_a + self.init_a[0]
a2 = (a2 - 0.5) * self.lambda_a + self.init_a[1]
out = torch.max(x_out * a1, x_out * a2) # 计算输出
elif self.exp == 1:
a1 = y
a1 = (a1 - 0.5) * self.lambda_a + self.init_a[0]
out = x_out * a1 # 计算输出
# 如果使用空间注意力,则进行相应的处理
if self.spa:
ys = self.spa(x_in).view(b, -1)
ys = F.softmax(ys, dim=1).view(b, 1, h, w) * h * w
ys = F.hardtanh(ys, 0, 3, inplace=True) / 3
out = out * ys # 应用空间注意力
return out # 返回最终输出
class DyDCNv2(nn.Module):
“”"
使用归一化层的ModulatedDeformConv2d模块。
“”"
def __init__(self, in_channels, out_channels, stride=1, norm_cfg=dict(type='GN', num_groups=16, requires_grad=True)):
super().__init__()
self.with_norm = norm_cfg is not None # 是否使用归一化
bias = not self.with_norm # 如果不使用归一化,则使用偏置
self.conv = ModulatedDeformConv2d(
in_channels, out_channels, 3, stride=stride, padding=1, bias=bias) # 定义可调变形卷积层
if self.with_norm:
self.norm = build_norm_layer(norm_cfg, out_channels)[1] # 定义归一化层
def forward(self, x, offset, mask):
"""
前向传播函数。
"""
x = self.conv(x.contiguous(), offset, mask) # 进行卷积操作
if self.with_norm:
x = self.norm(x) # 应用归一化
return x # 返回输出
class DyHeadBlock_Prune(nn.Module):
“”"
DyHead模块,包含三种类型的注意力机制。
“”"
def __init__(self, in_channels, norm_type='GN', zero_init_offset=True,
act_cfg=dict(type='HSigmoid', bias=3.0, divisor=6.0)):
super().__init__()
self.zero_init_offset = zero_init_offset # 是否初始化偏移为零
self.offset_and_mask_dim = 3 * 3 * 3 # 偏移和掩码的维度
self.offset_dim = 2 * 3 * 3 # 偏移的维度
# 根据归一化类型选择归一化配置
norm_dict = dict(type='GN', num_groups=16, requires_grad=True) if norm_type == 'GN' else dict(type='BN', requires_grad=True)
# 定义不同层的卷积模块
self.spatial_conv_high = DyDCNv2(in_channels, in_channels, norm_cfg=norm_dict)
self.spatial_conv_mid = DyDCNv2(in_channels, in_channels)
self.spatial_conv_low = DyDCNv2(in_channels, in_channels, stride=2)
self.spatial_conv_offset = nn.Conv2d(in_channels, self.offset_and_mask_dim, 3, padding=1) # 偏移和掩码卷积层
# 定义尺度注意力模块
self.scale_attn_module = nn.Sequential(
nn.AdaptiveAvgPool2d(1), nn.Conv2d(in_channels, 1, 1),
nn.ReLU(inplace=True), build_activation_layer(act_cfg))
self.task_attn_module = DyReLU(in_channels) # 任务注意力模块
self._init_weights() # 初始化权重
def _init_weights(self):
"""
权重初始化函数。
"""
for m in self.modules():
if isinstance(m, nn.Conv2d):
normal_init(m, 0, 0.01) # 正态初始化卷积层
if self.zero_init_offset:
constant_init(self.spatial_conv_offset, 0) # 初始化偏移为零
def forward(self, x, level):
"""
前向传播函数。
"""
# 计算DCNv2的偏移和掩码
offset_and_mask = self.spatial_conv_offset(x[level])
offset = offset_and_mask[:, :self.offset_dim, :, :] # 提取偏移
mask = offset_and_mask[:, self.offset_dim:, :, :].sigmoid() # 提取掩码并应用sigmoid
mid_feat = self.spatial_conv_mid(x[level], offset, mask) # 中间特征卷积
sum_feat = mid_feat * self.scale_attn_module(mid_feat) # 应用尺度注意力
summed_levels = 1 # 计数已处理的层数
# 处理低层特征
if level > 0:
low_feat = self.spatial_conv_low(x[level - 1], offset, mask)
sum_feat += low_feat * self.scale_attn_module(low_feat)
summed_levels += 1
# 处理高层特征
if level < len(x) - 1:
high_feat = F.interpolate(
self.spatial_conv_high(x[level + 1], offset, mask),
size=x[level].shape[-2:],
mode='bilinear',
align_corners=True)
sum_feat += high_feat * self.scale_attn_module(high_feat)
summed_levels += 1
return self.task_attn_module(sum_feat / summed_levels) # 返回最终输出
代码核心部分解释:
DyReLU: 动态ReLU激活函数,能够根据输入动态调整激活值。它使用自适应平均池化和全连接层来生成动态参数。
DyDCNv2: 自定义的可调变形卷积层,支持归一化。它结合了偏移和掩码来进行卷积操作。
DyHeadBlock_Prune: 主要模块,结合了多种注意力机制,通过不同层的卷积和注意力机制来处理输入特征,最终生成输出。
这个程序文件 dyhead_prune.py 是一个用于实现动态头部(Dynamic Head)模块的 PyTorch 代码,主要用于计算机视觉任务中的特征提取和注意力机制。文件中定义了多个类和函数,下面是对其主要内容的说明。
首先,文件导入了 PyTorch 及其相关模块,包括神经网络模块和功能模块。此外,还尝试导入了一些来自 mmcv 和 mmengine 的功能,这些库通常用于计算机视觉中的深度学习任务。如果导入失败,则会忽略相关的导入。
接下来,定义了一个 _make_divisible 函数,用于确保给定的值可以被指定的除数整除,并且不会低于最小值。这个函数在模型设计中常用于调整通道数,以便更好地适应硬件的计算能力。
然后,定义了几个激活函数的类,包括 swish、h_swish 和 h_sigmoid。这些类都继承自 nn.Module,并实现了 forward 方法,分别计算对应的激活函数。这些激活函数在深度学习模型中用于引入非线性特性。
接着,定义了 DyReLU 类,这是一个动态的 ReLU 激活函数模块。它通过对输入特征进行自适应调整来实现动态激活,具体包括对输入进行全局平均池化,然后通过全连接层生成动态参数,并根据这些参数调整输入特征。该模块还支持空间注意力机制的选项。
DyDCNv2 类是一个带有归一化层的可调变形卷积模块。它使用 ModulatedDeformConv2d 进行卷积操作,并根据配置选择是否添加归一化层。这个模块的设计使得在处理特征时能够灵活地应用变形卷积。
最后,DyHeadBlock_Prune 类是动态头部的核心模块,包含了多种注意力机制。它使用了多个 DyDCNv2 卷积层来处理不同层次的特征,并通过计算偏移量和掩码来实现动态卷积。该模块还实现了一个缩放注意力机制和任务注意力机制,以增强特征的表达能力。
在 DyHeadBlock_Prune 的初始化方法中,定义了多个卷积层和注意力模块,并对权重进行了初始化。forward 方法则负责计算输入特征的输出,结合不同层次的特征和注意力机制,最终输出经过处理的特征。
总体而言,这个文件实现了一个复杂的动态头部模块,结合了动态激活、变形卷积和多层次特征融合等技术,旨在提高计算机视觉任务中的特征提取能力和模型性能。
源码文件
源码获取
可以直接加我下方的微信哦!