背景意义
研究背景与意义
随着电力行业的快速发展,电力设备的安全性和可靠性变得愈发重要。电力设备在日常运行中容易受到环境因素、老化、机械损伤等多种因素的影响,导致设备缺陷的产生。这些缺陷不仅会影响电力的正常供应,还可能引发安全事故,造成严重的经济损失和人员伤亡。因此,及时、准确地检测电力设备的缺陷,成为了电力行业亟待解决的关键问题。
传统的电力设备缺陷检测方法多依赖人工巡检,这种方式不仅效率低下,而且容易受到人为因素的影响,导致漏检和误检的情况发生。近年来,随着计算机视觉技术的迅猛发展,基于深度学习的自动化检测系统逐渐成为研究的热点。YOLO(You Only Look Once)系列模型因其高效的实时检测能力和良好的准确性,广泛应用于物体检测任务中。然而,现有的YOLO模型在电力设备缺陷检测中的应用仍存在一定的局限性,如对复杂背景的适应性不足、对小目标的检测精度不高等问题。
本研究旨在基于改进的YOLOv11模型,构建一个高效的电力设备缺陷检测系统。该系统将利用包含1100张图像的poletesttest数据集,涵盖了五个类别的电力设备缺陷,如连接缺陷、绝缘子缺陷等。通过对数据集的深入分析和模型的优化,期望提升系统在实际应用中的检测准确率和鲁棒性。此研究不仅为电力设备的智能化管理提供了技术支持,也为相关领域的研究提供了新的思路和方法,具有重要的理论价值和实际意义。
图片效果
数据集信息
本项目数据集信息介绍
本项目所使用的数据集旨在为改进YOLOv11的电力设备缺陷检测系统提供强有力的支持。该数据集名为“poletesttest”,专注于电力设备的多种缺陷类型,涵盖了五个主要类别。这些类别分别是:连接缺陷(_Connection)、绝缘子缺陷(_LA)、聚合物材料缺陷(_PolymerH)、聚合物低压缺陷(_PolymerLP)以及变压器缺陷(_TR)。通过对这些类别的详细标注和分类,我们能够更好地训练深度学习模型,以实现高效、准确的缺陷检测。
在数据集的构建过程中,我们采用了多种数据采集技术,包括现场拍摄和模拟数据生成,确保数据的多样性和代表性。每个类别的样本数量经过精心设计,以保证模型在训练过程中能够充分学习到每种缺陷的特征。数据集中包含的图像涵盖了不同的拍摄角度、光照条件和背景环境,旨在提高模型的鲁棒性和适应性。
此外,为了提升模型的泛化能力,我们还对数据集进行了数据增强处理,包括旋转、缩放、裁剪和颜色变换等操作。这些处理不仅增加了样本的多样性,还有效地防止了模型的过拟合现象。通过对“poletesttest”数据集的深入分析和处理,我们期望能够为电力设备的缺陷检测提供一个全面、准确的解决方案,从而提高电力设备的安全性和可靠性。最终,经过训练的YOLOv11模型将能够在实际应用中快速、准确地识别和定位电力设备的各种缺陷,为电力行业的维护和管理提供有力的技术支持。
核心代码
以下是经过简化和注释的核心代码部分:
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
def get_conv2d(in_channels, out_channels, kernel_size, stride, padding, dilation, groups, bias):
“”"
创建一个2D卷积层。
“”"
return nn.Conv2d(
in_channels, out_channels, kernel_size, stride, padding, dilation, groups, bias
)
def get_bn(channels):
“”"
创建一个批量归一化层。
“”"
return nn.BatchNorm2d(channels)
class Mask(nn.Module):
“”"
定义一个Mask类,用于生成权重掩码。
“”"
def init(self, size):
super().init()
# 初始化权重参数,范围在-1到1之间
self.weight = torch.nn.Parameter(data=torch.Tensor(*size), requires_grad=True)
self.weight.data.uniform_(-1, 1)
def forward(self, x):
# 使用sigmoid函数对权重进行归一化
w = torch.sigmoid(self.weight)
masked_wt = w.mul(x) # 将权重应用于输入
return masked_wt
class ReparamLargeKernelConv(nn.Module):
“”"
重参数化大卷积核的卷积层。
“”"
def init(self, in_channels, out_channels, kernel_size, small_kernel=5, stride=1, groups=1, bn=True):
super(ReparamLargeKernelConv, self).init()
self.kernel_size = kernel_size
self.small_kernel = small_kernel
# 计算填充大小
padding = kernel_size // 2
# 创建卷积层
self.lkb_origin = get_conv2d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
dilation=1,
groups=groups,
bias=True,
)
# 创建小卷积层
if small_kernel < kernel_size:
self.small_conv = get_conv2d(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=small_kernel,
stride=stride,
padding=small_kernel // 2,
groups=groups,
dilation=1,
bias=True,
)
self.bn = get_bn(out_channels) # 批量归一化层
self.act = nn.SiLU() # 激活函数
def forward(self, inputs):
# 前向传播
out = self.lkb_origin(inputs) # 大卷积层输出
if hasattr(self, "small_conv"):
out += self.small_conv(inputs) # 加上小卷积层输出
return self.act(self.bn(out)) # 归一化和激活
def get_equivalent_kernel_bias(self):
"""
获取等效的卷积核和偏置。
"""
eq_k = self.lkb_origin.weight # 大卷积层的权重
eq_b = self.lkb_origin.bias # 大卷积层的偏置
if hasattr(self, "small_conv"):
small_k = self.small_conv.weight # 小卷积层的权重
small_b = self.small_conv.bias # 小卷积层的偏置
eq_b += small_b # 合并偏置
# 将小卷积核填充到大卷积核的中心
eq_k += nn.functional.pad(small_k, [(self.kernel_size - self.small_kernel) // 2] * 4)
return eq_k, eq_b # 返回等效的卷积核和偏置
代码说明:
get_conv2d 和 get_bn 函数用于创建卷积层和批量归一化层。
Mask 类用于生成一个可学习的权重掩码,应用于输入数据。
ReparamLargeKernelConv 类是一个自定义的卷积层,支持大卷积核和小卷积核的组合。
在初始化时,计算填充大小,并创建相应的卷积层和批量归一化层。
在前向传播中,先通过大卷积层计算输出,再加上小卷积层的输出,最后进行批量归一化和激活。
get_equivalent_kernel_bias 方法用于获取合并后的等效卷积核和偏置。
这个程序文件 shiftwise_conv.py 实现了一个用于深度学习的卷积神经网络模块,主要包括了对大卷积核的重参数化以及小卷积核的使用。以下是对代码的详细说明。
首先,文件导入了必要的库,包括 math、torch 以及 torch.nn 和 torch.nn.functional。这些库提供了实现神经网络所需的基础功能。
接下来,定义了一个 get_conv2d 函数,该函数用于创建一个二维卷积层。它接受多个参数,包括输入通道数、输出通道数、卷积核大小、步幅、填充、扩张率、分组数和是否使用偏置。函数内部会计算填充,并返回一个 nn.Conv2d 对象。
get_bn 函数用于创建一个批归一化层,接受通道数作为参数。
Mask 类是一个自定义的 PyTorch 模块,包含一个可学习的权重参数。其 forward 方法通过对权重应用 Sigmoid 函数来生成一个掩码,并将其应用于输入张量。
conv_bn_ori 函数创建一个包含卷积层和可选的批归一化层的序列模块。它根据输入参数设置卷积层的各项属性,并在需要时添加批归一化层。
LoRAConvsByWeight 类实现了一种特殊的卷积操作,旨在通过权重合并不同的卷积核。它的构造函数接受多个参数,设置卷积层、掩码和批归一化层。forward 方法对输入进行卷积操作,并通过 forward_lora 方法对输出进行处理,最后将两个方向的结果相加。
forward_lora 方法用于在指定方向上对输出进行处理,计算出每个组的输出,并在需要时应用批归一化。
rearrange_data 方法负责根据输入的索引和方向对数据进行重新排列,计算出新的填充和切片位置。
shift 方法用于计算卷积操作所需的填充和窗口索引,以确保特征图的大小不变。
conv_bn 函数根据输入的卷积核大小选择适当的卷积操作,可能会使用 LoRAConvsByWeight 类。
fuse_bn 函数用于将卷积层和批归一化层融合,计算出等效的卷积核和偏置。
ReparamLargeKernelConv 类是整个模块的核心,负责实现大卷积核的重参数化。它的构造函数接受多个参数,设置卷积层、批归一化层和激活函数。forward 方法根据是否存在重参数化的卷积层,决定如何处理输入。
get_equivalent_kernel_bias 方法用于获取融合后的卷积核和偏置,而 switch_to_deploy 方法则将模型切换到部署模式,替换掉原有的卷积层,使用融合后的卷积核和偏置。
总体而言,这个文件实现了一个灵活的卷积模块,能够处理不同大小的卷积核,并通过重参数化和掩码机制来优化卷积操作,适用于深度学习中的各种任务。
10.4 predict.py
以下是经过简化和注释的核心代码部分:
导入必要的模块
from ultralytics.engine.predictor import BasePredictor
from ultralytics.engine.results import Results
from ultralytics.utils import ops
class DetectionPredictor(BasePredictor):
“”"
DetectionPredictor类用于基于检测模型进行预测。
该类继承自BasePredictor类,主要实现了后处理预测结果的方法。
“”"
def postprocess(self, preds, img, orig_imgs):
"""
对预测结果进行后处理,并返回Results对象的列表。
参数:
preds: 模型的原始预测结果
img: 输入图像
orig_imgs: 原始输入图像(可能是一个批次)
返回:
results: 包含处理后结果的Results对象列表
"""
# 使用非极大值抑制(NMS)来过滤预测框
preds = ops.non_max_suppression(
preds,
self.args.conf, # 置信度阈值
self.args.iou, # IOU阈值
agnostic=self.args.agnostic_nms, # 是否使用类别无关的NMS
max_det=self.args.max_det, # 最大检测框数量
classes=self.args.classes, # 需要检测的类别
)
# 如果输入的原始图像不是列表,则将其转换为numpy数组
if not isinstance(orig_imgs, list):
orig_imgs = ops.convert_torch2numpy_batch(orig_imgs)
results = [] # 初始化结果列表
for i, pred in enumerate(preds):
orig_img = orig_imgs[i] # 获取对应的原始图像
# 将预测框的坐标从缩放后的图像空间转换回原始图像空间
pred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], orig_img.shape)
img_path = self.batch[0][i] # 获取图像路径
# 创建Results对象并添加到结果列表中
results.append(Results(orig_img, path=img_path, names=self.model.names, boxes=pred))
return results # 返回处理后的结果列表
代码注释说明:
导入模块:导入了必要的类和函数,以便在DetectionPredictor类中使用。
DetectionPredictor类:这是一个用于进行目标检测预测的类,继承自BasePredictor。
postprocess方法:这是类中的核心方法,负责对模型的预测结果进行后处理。
非极大值抑制:通过ops.non_max_suppression函数过滤掉重叠的预测框,以保留最有可能的检测结果。
图像转换:如果原始图像不是列表格式,则将其转换为numpy数组,以便后续处理。
坐标缩放:将预测框的坐标从模型输出的图像空间转换回原始图像的空间。
结果收集:将每个处理后的结果存储在Results对象中,并添加到结果列表中。
这个程序文件 predict.py 是一个用于目标检测的预测模块,基于 Ultralytics YOLO(You Only Look Once)模型。文件中定义了一个名为 DetectionPredictor 的类,该类继承自 BasePredictor,主要用于处理目标检测模型的预测过程。
在类的文档字符串中,提供了一个使用示例,展示了如何创建 DetectionPredictor 的实例并调用其预测功能。示例中,首先从 ultralytics.utils 导入了 ASSETS,然后定义了一个包含模型路径和数据源的字典 args。接着,通过传入 args 创建了 DetectionPredictor 的实例,并调用 predict_cli() 方法进行预测。
类中包含一个名为 postprocess 的方法,该方法用于对模型的预测结果进行后处理。具体步骤如下:
非极大值抑制(NMS):使用 ops.non_max_suppression 函数对预测结果进行处理,以消除冗余的检测框。该函数接受多个参数,包括置信度阈值、IOU阈值、是否使用类别无关的 NMS、最大检测框数量以及需要检测的类别。
图像格式转换:检查输入的原始图像是否为列表。如果不是,则调用 ops.convert_torch2numpy_batch 将其转换为 NumPy 数组,以便后续处理。
结果构建:初始化一个空的结果列表 results,然后遍历每个预测结果。对于每个预测框,首先获取对应的原始图像,并通过 ops.scale_boxes 函数将预测框的坐标缩放到原始图像的尺寸。接着,获取图像路径,并将原始图像、路径、模型名称和预测框信息封装成 Results 对象,添加到结果列表中。
最终,postprocess 方法返回一个包含所有处理后结果的列表。这些结果可以用于后续的可视化或分析操作。整体来看,这个文件实现了目标检测模型的预测和结果处理功能,适用于需要进行目标检测的应用场景。
源码文件
源码获取
欢迎大家点赞、收藏、关注、评论啦 、查看👇🏻获取联系方式👇🏻