【完整源码+数据集+部署教程】道路与树木实例分割系统源码和数据集:改进yolo11-DCNV2

背景意义

研究背景与意义

随着城市化进程的加快,城市道路与绿化带的规划与管理变得愈发重要。道路与树木的实例分割不仅对城市环境的监测与管理有着重要意义,同时也为智能交通系统、环境保护及城市规划提供了重要的数据支持。近年来,深度学习技术的迅猛发展,尤其是目标检测与实例分割领域的进步,使得我们能够更高效地处理和分析图像数据。YOLO(You Only Look Once)系列模型因其高效性和准确性,成为了实例分割任务中的重要工具。

本研究旨在基于改进的YOLOv11模型,构建一个高效的道路与树木实例分割系统。该系统将利用一个包含1100张图像的专用数据集,数据集中涵盖了两类主要对象:道路和树木。通过对这些对象的精确分割,我们能够更好地理解城市环境中道路与绿化的分布特征,为后续的城市规划和环境保护提供科学依据。

在数据集的构建过程中,采用了多种数据增强技术,包括随机旋转、剪切、模糊处理及噪声添加等,这些技术不仅丰富了训练数据的多样性,也提高了模型的鲁棒性。通过这些预处理和增强手段,模型能够在更复杂的环境中保持良好的性能,从而提高实例分割的准确性。

综上所述,基于改进YOLOv11的道路与树木实例分割系统的研究,不仅为城市环境的智能监测提供了新思路,也为相关领域的研究提供了新的数据支持与技术手段。随着该系统的不断优化与完善,预计将为未来的城市管理与环境保护工作提供更加精准和高效的解决方案。

图片效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

数据集信息

本项目数据集信息介绍

本项目旨在改进YOLOv11的道路与树木实例分割系统,为此我们构建了一个专门的数据集,主题为“path_planing 2”。该数据集包含了两个主要类别,分别是“road”(道路)和“tree”(树木),这两个类别在城市和乡村环境中都具有重要的应用价值。通过对这些类别的精确识别与分割,我们能够为自动驾驶、城市规划以及环境监测等领域提供强有力的数据支持。

数据集的构建过程涵盖了多种场景和条件,以确保模型在不同环境下的鲁棒性。我们收集了来自不同地理位置的图像,包括城市街道、乡村小路以及公园等场所,确保数据集的多样性和代表性。在图像标注过程中,采用了高精度的标注工具,确保每一幅图像中的道路和树木都得到了准确的分割。这一过程不仅提升了数据集的质量,也为后续的模型训练奠定了坚实的基础。

在数据集的数量方面,我们确保了每个类别的样本量均衡,以避免模型在训练过程中出现偏差。通过对数据集的细致分析,我们发现道路和树木的分布特征各具特色,这为模型的学习提供了丰富的信息。最终,我们的数据集不仅具备了良好的数量基础,还在类别多样性和环境适应性上表现出色,为改进YOLOv11的实例分割能力提供了强有力的支持。

通过这一数据集的应用,我们期望能够显著提升YOLOv11在道路与树木实例分割任务中的性能,使其在实际应用中更具实用性和准确性。我们相信,这一数据集将为相关研究和应用的发展开辟新的可能性。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

核心代码

以下是经过简化和注释的核心代码部分,主要包含了FasterNet模型的定义及其关键组件的实现。

import torch
import torch.nn as nn
from typing import List
from torch import Tensor

class PartialConv3(nn.Module):
“”“部分卷积层,用于处理输入特征图的部分通道”“”

def __init__(self, dim, n_div, forward):
    super().__init__()
    self.dim_conv3 = dim // n_div  # 计算部分卷积的通道数
    self.dim_untouched = dim - self.dim_conv3  # 计算未被卷积处理的通道数
    self.partial_conv3 = nn.Conv2d(self.dim_conv3, self.dim_conv3, 3, 1, 1, bias=False)  # 定义卷积层

    # 根据前向传播方式选择不同的前向函数
    if forward == 'slicing':
        self.forward = self.forward_slicing
    elif forward == 'split_cat':
        self.forward = self.forward_split_cat
    else:
        raise NotImplementedError

def forward_slicing(self, x: Tensor) -> Tensor:
    """仅用于推理阶段的前向传播"""
    x = x.clone()  # 保持原始输入不变,以便后续的残差连接
    x[:, :self.dim_conv3, :, :] = self.partial_conv3(x[:, :self.dim_conv3, :, :])  # 处理部分通道
    return x

def forward_split_cat(self, x: Tensor) -> Tensor:
    """用于训练和推理阶段的前向传播"""
    x1, x2 = torch.split(x, [self.dim_conv3, self.dim_untouched], dim=1)  # 分割输入特征图
    x1 = self.partial_conv3(x1)  # 对部分通道进行卷积
    x = torch.cat((x1, x2), 1)  # 连接卷积后的部分和未处理的部分
    return x

class MLPBlock(nn.Module):
“”“多层感知机块,包含卷积和激活层”“”

def __init__(self, dim, n_div, mlp_ratio, drop_path, layer_scale_init_value, act_layer, norm_layer, pconv_fw_type):
    super().__init__()
    self.dim = dim
    self.mlp_ratio = mlp_ratio
    self.drop_path = nn.Identity() if drop_path <= 0 else nn.Dropout(drop_path)  # 根据drop_path值选择是否使用Dropout
    self.n_div = n_div

    mlp_hidden_dim = int(dim * mlp_ratio)  # 计算隐藏层维度

    # 定义MLP层
    mlp_layer: List[nn.Module] = [
        nn.Conv2d(dim, mlp_hidden_dim, 1, bias=False),
        norm_layer(mlp_hidden_dim),
        act_layer(),
        nn.Conv2d(mlp_hidden_dim, dim, 1, bias=False)
    ]
    self.mlp = nn.Sequential(*mlp_layer)  # 将MLP层组合成序列

    # 定义空间混合层
    self.spatial_mixing = PartialConv3(dim, n_div, pconv_fw_type)

def forward(self, x: Tensor) -> Tensor:
    """前向传播函数"""
    shortcut = x  # 保存输入以进行残差连接
    x = self.spatial_mixing(x)  # 通过空间混合层
    x = shortcut + self.drop_path(self.mlp(x))  # 残差连接
    return x

class FasterNet(nn.Module):
“”“FasterNet模型定义”“”

def __init__(self, in_chans=3, num_classes=1000, embed_dim=96, depths=(1, 2, 8, 2), mlp_ratio=2., n_div=4,
             patch_size=4, patch_stride=4, patch_norm=True, drop_path_rate=0.1, norm_layer=nn.BatchNorm2d,
             act_layer=nn.ReLU, pconv_fw_type='split_cat'):
    super().__init__()

    self.num_stages = len(depths)  # 模型阶段数
    self.embed_dim = embed_dim  # 嵌入维度
    self.patch_norm = patch_norm  # 是否使用归一化
    self.mlp_ratio = mlp_ratio  # MLP比率
    self.depths = depths  # 每个阶段的深度

    # 分块嵌入层
    self.patch_embed = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_stride, bias=False)

    # 构建各个阶段
    stages_list = []
    for i_stage in range(self.num_stages):
        stage = MLPBlock(dim=int(embed_dim * 2 ** i_stage), n_div=n_div, mlp_ratio=self.mlp_ratio,
                         drop_path=0.1, layer_scale_init_value=0, norm_layer=norm_layer, act_layer=act_layer,
                         pconv_fw_type=pconv_fw_type)
        stages_list.append(stage)

    self.stages = nn.Sequential(*stages_list)  # 将所有阶段组合成序列

def forward(self, x: Tensor) -> Tensor:
    """前向传播函数"""
    x = self.patch_embed(x)  # 通过嵌入层
    outs = []
    for stage in self.stages:
        x = stage(x)  # 通过每个阶段
        outs.append(x)  # 收集输出
    return outs  # 返回所有阶段的输出

用于创建FasterNet模型的函数
def fasternet_t0(weights=None, cfg=‘path/to/config.yaml’):
with open(cfg) as f:
cfg = yaml.load(f, Loader=yaml.SafeLoader) # 加载配置文件
model = FasterNet(**cfg) # 创建FasterNet模型
if weights is not None:
pretrain_weight = torch.load(weights, map_location=‘cpu’) # 加载预训练权重
model.load_state_dict(pretrain_weight) # 更新模型权重
return model

示例:创建FasterNet模型并进行前向传播
if name == ‘main’:
model = fasternet_t0(weights=‘path/to/weights.pth’, cfg=‘path/to/config.yaml’) # 创建模型
inputs = torch.randn((1, 3, 640, 640)) # 创建随机输入
outputs = model(inputs) # 前向传播
for output in outputs:
print(output.size()) # 打印每个阶段的输出尺寸
代码注释说明:
PartialConv3: 实现了部分卷积的逻辑,可以选择不同的前向传播方式(切片或拼接)。
MLPBlock: 定义了一个多层感知机块,包含卷积、归一化和激活函数,并支持残差连接。
FasterNet: 整个模型的主体,包含多个阶段的MLP块和嵌入层。
fasternet_t0: 用于创建FasterNet模型的函数,可以加载配置和预训练权重。
主程序: 示例代码,展示如何创建模型并进行前向传播。
这个程序文件 fasternet.py 实现了一个名为 FasterNet 的深度学习模型,主要用于图像处理任务。代码中包含了多个类和函数,构成了模型的结构和功能。

首先,程序导入了必要的库,包括 PyTorch 和一些其他模块。接着,定义了多个类来构建模型的不同部分。Partial_conv3 类实现了一个部分卷积层,支持两种前向传播方式:切片(slicing)和分割拼接(split_cat)。切片方式主要用于推理阶段,而分割拼接方式则用于训练阶段。

MLPBlock 类实现了一个多层感知机(MLP)模块,包含两个卷积层和一个激活函数。该模块还集成了空间混合的部分卷积层,并支持层缩放(layer scaling),以增强模型的表达能力。

BasicStage 类则是由多个 MLPBlock 组成的一个基本阶段,用于堆叠多个处理层以加深网络的深度。PatchEmbed 和 PatchMerging 类分别用于将输入图像分割成小块并进行嵌入,以及合并这些小块以减少特征图的尺寸。

FasterNet 类是整个模型的核心,构造了多个阶段,并定义了输入和输出的处理流程。模型的初始化过程中,会根据传入的参数设置不同的层和结构,包括嵌入层、基本阶段和归一化层。

在模型的前向传播中,输入图像首先经过嵌入层,然后依次通过各个阶段,最后输出多个特征图。这些特征图可以用于后续的密集预测任务。

程序还定义了一些辅助函数,如 update_weight 用于更新模型权重,fasternet_t0、fasternet_t1 等函数用于加载不同配置的 FasterNet 模型,并可选择性地加载预训练权重。

最后,在主程序中,示例展示了如何加载一个特定配置的 FasterNet 模型,并对随机生成的输入进行前向传播,输出各个阶段的特征图尺寸。这些特征图的尺寸可以用于验证模型的结构是否符合预期。

总体而言,这个程序文件实现了一个灵活且高效的深度学习模型结构,适用于各种图像处理任务,具有良好的可扩展性和可配置性。

10.4 CTrans.py
以下是保留的核心代码部分,并添加了详细的中文注释:

import torch
import torch.nn as nn
import numpy as np
from torch.nn import Dropout, Softmax, Conv2d, LayerNorm

class Channel_Embeddings(nn.Module):
“”“构建从图像块和位置嵌入的通道嵌入”“”
def init(self, patchsize, img_size, in_channels):
super().init()
img_size = (img_size, img_size) # 将图像大小转换为元组
patch_size = (patchsize, patchsize) # 将补丁大小转换为元组
n_patches = (img_size[0] // patch_size[0]) * (img_size[1] // patch_size[1]) # 计算补丁数量

    # 使用最大池化和卷积层构建补丁嵌入
    self.patch_embeddings = nn.Sequential(
        nn.MaxPool2d(kernel_size=5, stride=5),
        Conv2d(in_channels=in_channels,
                out_channels=in_channels,
                kernel_size=patchsize // 5,
                stride=patchsize // 5)
    )

    # 初始化位置嵌入参数
    self.position_embeddings = nn.Parameter(torch.zeros(1, n_patches, in_channels))
    self.dropout = Dropout(0.1)  # Dropout层以防止过拟合

def forward(self, x):
    """前向传播"""
    if x is None:
        return None
    x = self.patch_embeddings(x)  # 通过补丁嵌入层
    x = x.flatten(2)  # 将特征展平
    x = x.transpose(-1, -2)  # 转置以适应后续操作
    embeddings = x + self.position_embeddings  # 添加位置嵌入
    embeddings = self.dropout(embeddings)  # 应用Dropout
    return embeddings

class Attention_org(nn.Module):
“”“自定义的多头注意力机制”“”
def init(self, vis, channel_num):
super(Attention_org, self).init()
self.vis = vis # 可视化标志
self.KV_size = sum(channel_num) # 键值对的大小
self.channel_num = channel_num # 通道数量
self.num_attention_heads = 4 # 注意力头的数量

    # 初始化查询、键、值的线性变换
    self.query = nn.ModuleList([nn.Linear(c, c, bias=False) for c in channel_num])
    self.key = nn.Linear(self.KV_size, self.KV_size, bias=False)
    self.value = nn.Linear(self.KV_size, self.KV_size, bias=False)
    self.softmax = Softmax(dim=3)  # Softmax层
    self.attn_dropout = Dropout(0.1)  # 注意力的Dropout层

def forward(self, *embeddings):
    """前向传播"""
    multi_head_Q = [query(emb) for query, emb in zip(self.query, embeddings) if emb is not None]
    multi_head_K = self.key(torch.cat(embeddings, dim=2))  # 将所有嵌入连接
    multi_head_V = self.value(torch.cat(embeddings, dim=2))

    # 计算注意力分数
    attention_scores = [torch.matmul(Q, multi_head_K) / np.sqrt(self.KV_size) for Q in multi_head_Q]
    attention_probs = [self.softmax(score) for score in attention_scores]  # 计算注意力概率

    # 应用Dropout
    attention_probs = [self.attn_dropout(prob) for prob in attention_probs]

    # 计算上下文层
    context_layers = [torch.matmul(prob, multi_head_V) for prob in attention_probs]
    return context_layers

class Mlp(nn.Module):
“”“多层感知机”“”
def init(self, in_channel, mlp_channel):
super(Mlp, self).init()
self.fc1 = nn.Linear(in_channel, mlp_channel) # 第一层全连接
self.fc2 = nn.Linear(mlp_channel, in_channel) # 第二层全连接
self.act_fn = nn.GELU() # 激活函数
self.dropout = Dropout(0.0) # Dropout层

def forward(self, x):
    """前向传播"""
    x = self.fc1(x)  # 通过第一层
    x = self.act_fn(x)  # 激活
    x = self.dropout(x)  # 应用Dropout
    x = self.fc2(x)  # 通过第二层
    return x

class Block_ViT(nn.Module):
“”“ViT块,包含注意力和前馈网络”“”
def init(self, vis, channel_num):
super(Block_ViT, self).init()
self.channel_attn = Attention_org(vis, channel_num) # 初始化注意力模块
self.ffn = Mlp(channel_num[0], channel_num[0] * 4) # 前馈网络

def forward(self, *embeddings):
    """前向传播"""
    attn_output = self.channel_attn(*embeddings)  # 计算注意力输出
    ffn_output = [self.ffn(output) for output in attn_output]  # 通过前馈网络
    return ffn_output

class Encoder(nn.Module):
“”“编码器,包含多个ViT块”“”
def init(self, vis, channel_num):
super(Encoder, self).init()
self.layer = nn.ModuleList([Block_ViT(vis, channel_num) for _ in range(1)]) # 初始化ViT块

def forward(self, *embeddings):
    """前向传播"""
    for layer in self.layer:
        embeddings = layer(*embeddings)  # 通过每个块
    return embeddings

class ChannelTransformer(nn.Module):
“”“通道变换器”“”
def init(self, channel_num=[64, 128, 256, 512], img_size=640, vis=False, patchSize=[40, 20, 10, 5]):
super().init()
self.embeddings = [Channel_Embeddings(patch, img_size // (2 ** i), channel) for i, (patch, channel) in enumerate(zip(patchSize, channel_num))]
self.encoder = Encoder(vis, channel_num) # 初始化编码器

def forward(self, en):
    """前向传播"""
    embeddings = [emb(en[i]) for i, emb in enumerate(self.embeddings) if en[i] is not None]
    encoded = self.encoder(*embeddings)  # 编码
    return encoded  # 返回编码后的结果

代码注释说明:
Channel_Embeddings: 该类负责将输入图像转换为补丁嵌入,并添加位置嵌入。它使用卷积和最大池化来实现。
Attention_org: 该类实现了多头注意力机制,计算输入嵌入之间的注意力分数,并生成上下文向量。
Mlp: 该类实现了一个简单的多层感知机,包含两个全连接层和一个激活函数。
Block_ViT: 该类表示一个ViT块,包含注意力层和前馈网络。
Encoder: 该类由多个ViT块组成,负责对输入的嵌入进行编码。
ChannelTransformer: 该类是整个模型的核心,负责将输入图像转换为嵌入,并通过编码器进行处理。
这个程序文件 CTrans.py 实现了一个名为 ChannelTransformer 的深度学习模型,主要用于图像处理任务。该模型结合了通道注意力机制和变换器结构,旨在提取和重建图像特征。以下是对文件中各个部分的详细说明。

首先,文件导入了一些必要的库,包括 torch 和 torch.nn,这些库提供了构建神经网络所需的基本组件。文件中定义了多个类,每个类都有其特定的功能。

Channel_Embeddings 类负责从输入图像中构建嵌入。它通过最大池化和卷积操作将图像划分为多个补丁,并为每个补丁生成位置嵌入。然后,将这些嵌入进行加和,并应用 dropout 操作以防止过拟合。

Reconstruct 类用于重建特征图。它接收嵌入特征,经过调整形状后,使用上采样和卷积操作生成新的特征图。该类的设计允许对特征图进行逐层重建,以便在网络的最后阶段将特征图恢复到原始图像的大小。

Attention_org 类实现了一个多头注意力机制。它接收多个嵌入,并计算它们之间的注意力权重。通过对输入的查询、键和值进行线性变换,计算注意力分数,并通过 softmax 函数生成注意力概率。该类还支持可视化注意力权重,便于分析模型的决策过程。

Mlp 类是一个简单的多层感知机(MLP),用于对嵌入进行非线性变换。它包含两个全连接层和一个激活函数(GELU),并在每个层之间应用 dropout,以提高模型的鲁棒性。

Block_ViT 类是变换器的基本构建块,结合了注意力机制和前馈网络。它首先对输入的嵌入进行层归一化,然后通过注意力层和前馈网络进行处理,最后将输入和输出相加以实现残差连接。

Encoder 类由多个 Block_ViT 组成,负责对输入的嵌入进行多层处理。它将每个块的输出进行归一化,并在每个块之间传递注意力权重,以便在训练过程中进行可视化。

ChannelTransformer 类是整个模型的核心,负责初始化嵌入层、编码器和重建层。它根据输入的图像通道数和大小,创建相应的嵌入层,并将编码器和重建层连接在一起。模型的前向传播过程包括嵌入生成、编码、重建和最后的特征图合并。

最后,GetIndexOutput 类用于从模型的输出中提取特定索引的结果,方便后续处理。

总体而言,这个程序文件实现了一个复杂的深度学习模型,结合了卷积、注意力机制和多层感知机,旨在有效地处理和重建图像特征。模型的设计灵活,能够适应不同的输入图像尺寸和通道数,适合于多种计算机视觉任务。

源码文件

在这里插入图片描述

源码获取

欢迎大家点赞、收藏、关注、评论啦 、查看👇🏻获取联系方式

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

飞翔的佩奇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值