tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
inputs = tokenizer(text, return_tensors="pt").to(device)
output = model.generate(
inputs.input_ids,
max_length=max_length,
do_sample=do_sample,
temperature=temperature,
top_p=top_p,
top_k=top_k
)
什么是input_ids
input_ids 是语言模型生成过程中的核心,它表示了输入文本在经过**分词器(Tokenizer)**处理后的 token 序列
语言模型(如 GPT 系列)确实是通过这种序列来理解上下文和关联的
为什么 input_ids 能捕捉到关联性?
语言模型(如 GPT-3)基于自回归模型或**自注意力机制(Transformer)**来生成文本,它们会根据输入的 token 序列来预测下一个 token。这就是为什么 input_ids 不仅仅是单独的输入,而是模型用来理解上下文的一个核心机制。
- 上下文理解和关联性