AI大模型之旅-大模型中的input_ids,自注意力机制,灾难性遗忘

tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
inputs = tokenizer(text, return_tensors="pt").to(device)
  output = model.generate(
        inputs.input_ids, 
        max_length=max_length, 
        do_sample=do_sample, 
        temperature=temperature, 
        top_p=top_p, 
        top_k=top_k
    )

什么是input_ids

input_ids 是语言模型生成过程中的核心,它表示了输入文本在经过**分词器(Tokenizer)**处理后的 token 序列
语言模型(如 GPT 系列)确实是通过这种序列来理解上下文和关联的

为什么 input_ids 能捕捉到关联性?

语言模型(如 GPT-3)基于自回归模型或**自注意力机制(Transformer)**来生成文本,它们会根据输入的 token 序列来预测下一个 token。这就是为什么 input_ids 不仅仅是单独的输入,而是模型用来理解上下文的一个核心机制。

  1. 上下文理解和关联性
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值