常见分布的数学期望和方差
概率论六大分布:
(离散)0-1、二项、泊松
(连续)均匀、指数、正态
数理统计三大分布:
卡方分布、t分布、F分布
分布: | 表达式(密度函数) | 数学期望 | 方差 |
---|---|---|---|
(概率论—离散随机变量) | |||
0–1分布:X~B(1,p) | P{X=k}=pk(1−p)1−k,k=0,1\large P\{X=k\}=p^{k}(1-p)^{1-k}, \quad k=0,1P{X=k}=pk(1−p)1−k,k=0,1 | p | p(1-p) |
二项分布:X~B(n,p) | P{X=k}=Cnkpk(1−p)n−k,k=0,1,⋯ ,n\large P\{X=k\}=C^{k}_{n}p^{k}(1-p)^{n-k}, k=0,1, \cdots, nP{X=k}=Cnkpk(1−p)n−k,k=0,1,⋯,n | np | np(1-p) |
泊松分布:X~P(λ) | P{X=k}=e−λλkk!,k=0,1,⋯ ,λ>0\large P\{X=k\}=e^{-\lambda} \frac{\lambda^{k}}{k !}, k=0,1, \cdots, \lambda>0P{X=k}=e−λk!λk,k=0,1,⋯,λ>0 | λ | λ |
(概率论—连续随机变量) | |||
均匀分布:X~U(a,b) | f(x)={1b−a,a<x<b,0, 其他 \large f(x)=\left\{\begin{array}{c}\frac{1}{b-a}, a<x<b, \\0, \quad \text { 其他 }\end{array}\right.f(x)={b−a1,a<x<b,0, 其他 | (a+b)/2 | (b−a)212\large \frac{(b-a)^2}{12}12(b−a)2 |
指数分布:X~EXP(θ) | f(x)={1θe−xθ,x>00,x≤0(θ>0)\large f(x)=\left\{\begin{array}{c}\frac{1}{\theta} e^{-\frac{x}{\theta}}, x>0 \\0, x \leq 0\end{array} \quad(\theta>0)\right.f(x)={θ1e−θx,x>00,x≤0(θ>0) | θ | θ2θ^2θ2 |
正态分布:X~N(μ,σ2) | f(x)=12πσe−(x−μ)22σ2(μ∈R,σ>0){\large f(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} \quad(\mu \in R, \sigma>0)}f(x)=2πσ1e−2σ2(x−μ)2(μ∈R,σ>0) | μ | σ2σ^2σ2 |
标准正态分布:X~N(0,1) | f(x)=12πe−x22(μ∈R,σ>0){\large f(x)=\frac{1}{\sqrt{2 \pi} } e^{-\frac{x^{2}}{2 }} \quad(\mu \in R, \sigma>0)}f(x)=2π1e−2x2(μ∈R,σ>0) | 0 | 1 |
(数理统计三大分布) | |||
卡方分布:χ2∼χ2(n)\chi^{2} \sim \chi^{2}(n)χ2∼χ2(n) | χ2=X12+X22+⋯+Xn2\large \chi^{2} =X_{1}^{2}+X_{2}^{2}+\cdots+X_{n}^{2}χ2=X12+X22+⋯+Xn2 (X∼N(0,1)X\sim N(0,1)X∼N(0,1)) | n | 2n |
t-分布:t~t(n) | t=XY/n\large t=\frac{X}{\sqrt{Y / n}}t=Y/nX (X∼N(0,1)X\sim N(0,1)X∼N(0,1),Y∼χ2(n)Y\sim \chi^2(n)Y∼χ2(n)) | 0 | nn−2\large \frac{n}{n-2}n−2n |
F-分布:F~F(m,n) | F=X/mY/n\large F=\frac{X /m}{Y / n}F=Y/nX/m (X∼χ2(m),Y∼χ2(n))( X \sim \chi^{2}\left(m\right), Y \sim \chi^{2}\left(n\right))(X∼χ2(m),Y∼χ2(n)) | nn−2\large \frac{n}{n-2}n−2n | 2n2(m+n−2)m(n−2)2(n−4)\large \frac{2 n^{2}(m+n-2)}{m(n-2)^{2}(n-4)}m(n−2)2(n−4)2n2(m+n−2) |