常见分布的数学期望和方差

本文概述了概率论中离散随机变量的0-1、二项和泊松分布,以及连续随机变量的均匀、指数和正态分布,重点介绍了它们各自的数学期望和方差公式。同时涵盖了数理统计中的卡方、t和F分布,详述了分布表达式及其统计特性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

常见分布的数学期望和方差

概率论六大分布
(离散)0-1、二项、泊松

​(连续)均匀、指数、正态

数理统计三大分布
卡方分布、t分布、F分布

分布:表达式(密度函数)数学期望方差
(概率论—离散随机变量)
0–1分布:X~B(1,p)P{X=k}=pk(1−p)1−k,k=0,1\large P\{X=k\}=p^{k}(1-p)^{1-k}, \quad k=0,1P{X=k}=pk(1p)1k,k=0,1pp(1-p)
二项分布:X~B(n,p)P{X=k}=Cnkpk(1−p)n−k,k=0,1,⋯ ,n\large P\{X=k\}=C^{k}_{n}p^{k}(1-p)^{n-k}, k=0,1, \cdots, nP{X=k}=Cnkpk(1p)nk,k=0,1,,nnpnp(1-p)
泊松分布:X~P(λ)P{X=k}=e−λλkk!,k=0,1,⋯ ,λ>0\large P\{X=k\}=e^{-\lambda} \frac{\lambda^{k}}{k !}, k=0,1, \cdots, \lambda>0P{X=k}=eλk!λk,k=0,1,,λ>0λλ
(概率论—连续随机变量)
均匀分布:X~U(a,b)f(x)={1b−a,a<x<b,0, 其他 \large f(x)=\left\{\begin{array}{c}\frac{1}{b-a}, a<x<b, \\0, \quad \text { 其他 }\end{array}\right.f(x)={ba1,a<x<b,0, 其他 (a+b)/2(b−a)212\large \frac{(b-a)^2}{12}12(ba)2
指数分布:X~EXP(θ)f(x)={1θe−xθ,x>00,x≤0(θ>0)\large f(x)=\left\{\begin{array}{c}\frac{1}{\theta} e^{-\frac{x}{\theta}}, x>0 \\0, x \leq 0\end{array} \quad(\theta>0)\right.f(x)={θ1eθx,x>00,x0(θ>0)θθ2θ^2θ2
正态分布:X~N(μ,σ2)f(x)=12πσe−(x−μ)22σ2(μ∈R,σ>0){\large f(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}} \quad(\mu \in R, \sigma>0)}f(x)=2πσ1e2σ2(xμ)2(μR,σ>0)μσ2σ^2σ2
标准正态分布:X~N(0,1)f(x)=12πe−x22(μ∈R,σ>0){\large f(x)=\frac{1}{\sqrt{2 \pi} } e^{-\frac{x^{2}}{2 }} \quad(\mu \in R, \sigma>0)}f(x)=2π1e2x2(μR,σ>0)01
(数理统计三大分布)
卡方分布:χ2∼χ2(n)\chi^{2} \sim \chi^{2}(n)χ2χ2(n)χ2=X12+X22+⋯+Xn2\large \chi^{2} =X_{1}^{2}+X_{2}^{2}+\cdots+X_{n}^{2}χ2=X12+X22++Xn2 (X∼N(0,1)X\sim N(0,1)XN(0,1))n2n
t-分布:t~t(n)t=XY/n\large t=\frac{X}{\sqrt{Y / n}}t=Y/nX (X∼N(0,1)X\sim N(0,1)XN(0,1)Y∼χ2(n)Y\sim \chi^2(n)Yχ2(n))0nn−2\large \frac{n}{n-2}n2n
F-分布:F~F(m,n)F=X/mY/n\large F=\frac{X /m}{Y / n}F=Y/nX/m (X∼χ2(m),Y∼χ2(n))( X \sim \chi^{2}\left(m\right), Y \sim \chi^{2}\left(n\right))(Xχ2(m),Yχ2(n))nn−2\large \frac{n}{n-2}n2n2n2(m+n−2)m(n−2)2(n−4)\large \frac{2 n^{2}(m+n-2)}{m(n-2)^{2}(n-4)}m(n2)2(n4)2n2(m+n2)
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值