sdnu 1280.就问你慌不慌 (高精度N进制加法)

本文详细解析了一个N进制(2≤N≤10)下的高精度加法算法实现,通过字符串操作和模运算,实现了任意长度数字的加法运算。文章通过示例输入输出展示了算法的有效性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Description

求N进制的高精度加法

Input

第一行输入N(2≤N≤10)

第二行两个数X Y(长度均≤100)

Output

输出N进制下X和Y的和

Sample Input

5
2 4

Sample Output

11

Source

Sunshine

时隔4个月。。我终于AC了这道题

我也不知道为什么把字符数组换成string就RE

orz

#include <bits/stdc++.h>
using namespace std;
int main()
{
    int n;
    while(scanf("%d",&n)!=EOF)
    {
        char x[120],y[120],s[120];
        scanf("%s%s",x+1,y+1);
        int lenx=strlen(x)-1;
        int leny=strlen(y)-1;
        if(lenx<leny)
        {
            for(int i=1;i<=leny;i++)
                swap(x[i],y[i]);
            swap(lenx,leny);
        }
        reverse(x+1,x+lenx+1);
        reverse(y+1,y+leny+1);
//        cout<<x<<' '<<y<<'\n';
        int tmp=0;
        for(int i=1;i<=leny;i++)
        {
            s[i]=((x[i]-'0')+(y[i]-'0')+tmp)%n+'0';
            tmp=((x[i]-'0')+(y[i]-'0')+tmp)/n;
        }
        for(int i=leny+1;i<=lenx;i++)
        {
            s[i]=((x[i]-'0')+tmp)%n+'0';
            tmp=((x[i]-'0')+tmp)/n;
        }
        if(tmp!=0)
            cout<<tmp;
        for(int i=lenx;i>=1;i--)
            cout<<s[i];
        cout<<'\n';
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值