动态规划 背包九讲 有依赖的背包问题 (树形DP)

解决一个复杂的背包问题,其中物品间存在依赖关系并形成树状结构。通过深度优先搜索(DFS)和动态规划求解最大价值,适用于算法竞赛和计算机科学教育。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

有依赖的背包问题

有 N 个物品和一个容量是 V 的背包。
物品之间具有依赖关系,且依赖关系组成一棵树的形状。如果选择一个物品,则必须选择它的父节点,根节点为-1 。

每件物品的编号是 i,体积是 vi,价值是 wi,依赖的父节点编号是 pi。物品的下标范围是 1…N。

求解将哪些物品装入背包,可使物品总体积不超过背包容量,且总价值最大。

输出最大价值。

输入格式
第一行有两个整数 N,V,用空格隔开,分别表示物品个数和背包容量。

接下来有 N 行数据,每行数据表示一个物品。
第 i 行有三个整数 vi,wi,pi,用空格隔开,分别表示物品的体积、价值和依赖的物品编号。
如果 pi=−1,表示根节点。 数据保证所有物品构成一棵树。

输出格式
输出一个整数,表示最大价值。

数据范围
1≤N,V≤100
1≤vi,wi≤100

解题思路:定义f[i][j]数组代表以i为根节点的子树占用j体积的背包能获得的最大价值;然后跑一下dfs,从叶子节点不断往上回溯,在回溯的过程中求出下层子树的最值,然后回溯到root节点即可。

Code:

#include<iostream>
#include<vector>
using namespace std;
const int maxn=1e2+7;

vector<int> ve[maxn];
int f[maxn][maxn],v[maxn],w[maxn],n,m,root;

void dfs(int x){
    for(int i=v[x];i<=m;i++) f[x][i]=w[x];
    
    for(int i=0;i<ve[x].size();i++){
        int y=ve[x][i];
        dfs(y);
        
        for(int j=m;j>=v[x];j--){
            for(int k=0;k<=j-v[x];k++){
                f[x][j]=max(f[x][j],f[x][j-k]+f[y][k]); // 根节点+子树节点所能获得最大的价值
            }
        }
    }
}

int main(){
    cin>>n>>m;
    
    for(int i=1;i<=n;i++){
        int fa;
        cin>>v[i]>>w[i]>>fa;
        if(fa==-1) root=i;
        else{
            ve[fa].push_back(i);
        }
    }
    
    dfs(root);
    cout<<f[root][m]<<"\n";
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值