有依赖的背包问题
有 N 个物品和一个容量是 V 的背包。
物品之间具有依赖关系,且依赖关系组成一棵树的形状。如果选择一个物品,则必须选择它的父节点,根节点为-1 。
每件物品的编号是 i,体积是 vi,价值是 wi,依赖的父节点编号是 pi。物品的下标范围是 1…N。
求解将哪些物品装入背包,可使物品总体积不超过背包容量,且总价值最大。
输出最大价值。
输入格式
第一行有两个整数 N,V,用空格隔开,分别表示物品个数和背包容量。
接下来有 N 行数据,每行数据表示一个物品。
第 i 行有三个整数 vi,wi,pi,用空格隔开,分别表示物品的体积、价值和依赖的物品编号。
如果 pi=−1,表示根节点。 数据保证所有物品构成一棵树。
输出格式
输出一个整数,表示最大价值。
数据范围
1≤N,V≤100
1≤vi,wi≤100
解题思路:定义f[i][j]数组代表以i为根节点的子树占用j体积的背包能获得的最大价值;然后跑一下dfs,从叶子节点不断往上回溯,在回溯的过程中求出下层子树的最值,然后回溯到root节点即可。
Code:
#include<iostream>
#include<vector>
using namespace std;
const int maxn=1e2+7;
vector<int> ve[maxn];
int f[maxn][maxn],v[maxn],w[maxn],n,m,root;
void dfs(int x){
for(int i=v[x];i<=m;i++) f[x][i]=w[x];
for(int i=0;i<ve[x].size();i++){
int y=ve[x][i];
dfs(y);
for(int j=m;j>=v[x];j--){
for(int k=0;k<=j-v[x];k++){
f[x][j]=max(f[x][j],f[x][j-k]+f[y][k]); // 根节点+子树节点所能获得最大的价值
}
}
}
}
int main(){
cin>>n>>m;
for(int i=1;i<=n;i++){
int fa;
cin>>v[i]>>w[i]>>fa;
if(fa==-1) root=i;
else{
ve[fa].push_back(i);
}
}
dfs(root);
cout<<f[root][m]<<"\n";
}