1082. 数字游戏 (数位DP)

本文介绍一种通过数位动态规划方法解决特定区间内不降数数量的问题。不降数是指从左到右数字非递减的整数。文章详细阐述了如何使用预处理数组f[i][j]来高效地计算闭区间[a, b]内的不降数个数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接:点此跳转

题目大意:
科协里最近很流行数字游戏。

某人命名了一种不降数,这种数字必须满足从左到右各位数字呈非下降关系,如 123,446。

现在大家决定玩一个游戏,指定一个整数闭区间 [a,b],问这个区间内有多少个不降数。

输入格式
输入包含多组测试数据。

每组数据占一行,包含两个整数 a 和 b。

输出格式
每行给出一组测试数据的答案,即 [a,b] 之间有多少不降数。

数据范围
1≤ a ≤ b ≤231−1

解题思路:
f[i][j] 数组代表着最高位是j并且一共有i位不降数的集合
f[i][j] = f[i-1][j] + f[i-1][j+1] + f[i-1][j+2] +…+ f[i-1][9];

按照数位DP分析步骤: 假设我们当前枚举到第i位,且第i位上的数字是x,那么现在对于答案的第i位数字j来说,可以填两类数字:

  1. j 取0~x-1 那么res += f[i+1][j];

  2. j 取 x last记录x,再枚举下一位

Code:

#include<iostream>
#include<vector>
using namespace std;
const int maxn=30;

int f[maxn][maxn];

void init(){          //预处理f数组
    for(int i=0;i<=9;i++) f[1][i]=1;
    
    for(int i=2;i<maxn;i++){
        for(int j=0;j<=9;j++){
            for(int k=j;k<=9;k++){
                f[i][j]+=f[i-1][k];
            }
        }
    }
}

int solve(int n){
    if(!n) return 1;
    vector<int> nums;
    while(n) nums.push_back(n%10),n/=10;
    
    int res=0;
    int last=0;
    for(int i=nums.size()-1;i>=0;i--){
        int x=nums[i];
        
        for(int j=last;j<x;j++){
            res+=f[i+1][j];  //(0~i位,一共有i+1位)
        }
        if(x<last) break;
        last=x;
        
        if(!i) res++; 
    }
    return res;
}

int main(){
    
    init();
    int a,b;
    while(~scanf("%d%d",&a,&b)){
        printf("%d\n",solve(b)-solve(a-1));
    }
    
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值