188. 买卖股票的最佳时机 IV
与前一题123. 买卖股票的最佳时机 III 是相同的思路,只是状态数变多了。123. 买卖股票的最佳时机 III 的题目要求至多买卖2次,共有4种状态;本题要求至多买卖k次,则共有2*k种状态:
- 0:无操作(防止数组越界)
- 1:第一次持有/买入
- 2:第一次不持有/卖出
- 3:第二次持有/买入
- 4:第二次不持有/卖出
… - 2*k-1:第k次持有/买入
- 2*k:第k次不持有/卖出
可以看到每一次买都对应一次卖,因为只有卖出了才会有利润。
dp[i][j]代表第i天第j个状态的最高利润
- 每次持有/买入(j%2==1)的状态转移方程:
- 当天未买入,保持前一天的持有状态:dp[ i ][ j ] = dp[ i-1 ][ j ]
- 当天买入,则当天该状态更新为前一天的前一个卖出状态减去当天的价格:dp[ i ][ j ] = dp[ i-1 ][ j-1 ] - prices[ i ]
整理上述规则得出每次持有/买入(j%2==1)的状态转移方程:dp[ i ][ j ] = max( dp[ i-1 ][ j ], dp[ i-1 ][ j-1 ] - prices[ i ] )
- 每次不持有/卖出(j%2==0)的状态转移方程:
- 当天未卖出,保持前一天的不持有状态: dp[ i ][ j ] = dp[ i-1 ][ j ]
- 当天卖出,则当天该状态更新为前一天的前一个买入状态加上当天的价格:dp[ i ][ j ] = dp[ i-1 ][ j-1 ] + prices[ i ]
整理上述规则得出每次持有/买入(j%2==0)的状态转移方程:dp[ i ][ j ] = max( dp[ i-1 ][ j ], dp[ i-1 ][ j-1 ] + prices[ i ] )
tips: 可以发现状态转换都是基于前一天的当前状态或前一天的前一个状态,因此状态0是为了防止第一次买入状态越界,无实际意义。
时间复杂度: O ( n ∗ k ) O(n*k) O(n∗k)
空间复杂度: O ( n ∗ k ) O(n*k) O(n∗k)
// c++
class Solution {
public:
int maxProfit(int k, vector<int>& prices) {
int len = prices.size();
vector<vector<int>> dp(len, vector<int>(2*k+1, 0));
// 初始化
for(int j=1; j<=2*k; j++){
if(j%2==1) dp[0][j] = -prices[0];
}
for(int i=1; i<len; i++){
for(int j=1;