NVIDIA Jeston GMSL Camera Driver实现

本文介绍了一种特定的嵌入式硬件开发环境搭建流程,包括使用的开发板、交叉编译工具、公共源代码及驱动代码等内容。特别强调了针对MAX9295和9296摄像头模块与IMX390传感器组合的驱动实现方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

环境准备:

HW:

  • develop board
  • X86 PC

SOFTWARE:

  • cross compile gcc tools
  • pulic source code
  • your driver code and makefile

框架:

  • 硬件框架
    在这里插入图片描述
    注意nano和tx1不支持GMSL1拖2/4模式,因为nano以及tx1不支持mipi vc
  • 官方driver
    在这里插入图片描述
    以MAX9295以及9296为例搭配IMX390为例,驱动层级如上图所示
    其中MAX9296为全局glboal param,供IMX390调用以及使用
    TBD。。。
### NVIDIA Jetson Orin Nano 高级特性和性能 #### 性能提升 NVIDIA Jetson Orin Nano 提供显著增强的计算能力和效率。Orin SoC 架构集成了最新的 Arm CPU 和 GPU 技术,使得该模块能够处理复杂的 AI 工作负载并支持多个并发神经网络操作[^4]。 #### 多媒体能力 Jetson Orin Nano 支持高达 4K 的视频编码和解码,在多媒体应用程序方面表现出色。这使其非常适合用于智能摄像头、机器人视觉和其他需要高效图像处理的应用场景[^5]。 #### 接口与连接选项 为了满足多样化的需求,此平台提供了丰富的接口选择,包括 PCIe Gen4、USB 3.2 和千兆以太网端口等高速通信通道。这些特性增强了设备之间的互连互通性以及数据传输速率[^6]。 #### 功耗管理 尽管拥有强大的硬件配置,但通过优化设计实现了较低功耗水平下的高性能表现。这种平衡对于电池供电型移动装置尤为重要[^7]。 #### 开发者工具链 配备完整的软件栈,如 CUDA-X AI 库集合,TensorRT 加速推理引擎以及其他必要的 SDKs/IDEs 来简化开发流程。开发者可以利用这些资源快速构建原型,并将其部署到实际环境中测试运行效果[^8]。 ```python import jetson.inference import jetson.utils net = jetson.inference.detectNet("ssd-mobilenet-v2", threshold=0.5) camera = jetson.utils.videoSource("/dev/video0") # '/dev/video0' for V4L2 display = jetson.utils.videoOutput("display://0") # 'my_video.mp4' for file while True: img = camera.Capture() detections = net.Detect(img) display.Render(img) if not display.IsStreaming(): break ```
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值