关于图像白化和色彩变换的基本内容可以参考:
图像标准化、图像白化、色彩变换_S L N的博客-CSDN博客
这是一篇关于图像风格迁移的论文,主要提出了whitening and coloring transforms(WCTs)来进行风格的迁移。
首先采用VGG网络对图像重建来训练网络,将训练好的VGG的encoder和decoder都fixed,用于图像特征提取和重建,损失函数如式(2.1)所示,Φ是通过encoder提取feature map。
图4 图像重建
Encoder和decoder训练好后,如图 5所示,将content image和style image通过encoder提取feature map,对feature map进行WCT进行特征迁移,WCT将content feature的统计特征和style feature的统计特征匹配,再将得到的feature map通过decoder重建。
图 5 WCT
Whitening transform的公式如式(2.2)所示,从图 6可以看出whitening保留了图像的全局内容结构,移除了图像本身的风格特征。
图 6 whitening transform
Coloring transform的公式如式所示,从图 7中可以看出WCT的效果会比直方图匹配(HM)的效果好很多,这应该是WCT考虑了不同特征的相似度的原因,HM是在每个通道上做的。
通过式(2.4)中的α来控制风格化的程度,
文中把single-level扩展到了multi-level,将前一层的输出作为后一层的content image输入,这样可以在不同的level进行统计特征匹配。
如图 9所示,lower level可以捕捉更低级的信息比如颜色,higher level可以捕捉到更复杂的局部结构。