1. 二元分类指标
TP:预测为 真的样本 中 确实为 真的数量
FP:预测为 真的样本 中 确实为 假的数量
FN:预测为 假的样本 中 确实为 真的数量
TN:预测为 假的样本 中 确实为 假的数量
准确率 Accuracy:
正 确 预 测 的 样 本 = 正 确 预 测 为 1 + 正 确 预 测 为 0 的 总 样 本 数 \frac{正确预测的样本=正确预测为1+正确预测为0的}{总样本数} 总样本数正确预测的样本=正确预测为1+正确预测为0的 = T P + T N A L L \frac{TP + TN}{ALL} ALLTP+TN
查准率 Precision:
所 有 预 测 为 真 的 样 本 中 真 的 数 量 预 测 为 真 样 本 的 数 量 \frac{所有预测为真的样本中真的数量}{预测为真样本的数量} 预测为真样本的数量所有预测为真的样本中真的数量 = T P T P + F P \frac{TP}{TP + FP} TP+FPTP
召回率 Recall:
所 有 预 测 为 真 的 样 本 中 真 的 数 量 所 有 真 样 本 数 量 \frac{所有预测为真的样本中真的数量}{所有真样本数量} 所有真样本数量所有预测为真的样本中真的数量 = T P T P + F N \frac{TP}{TP + FN} TP+FNTP
举例: 预测得病个数。
假设总共有100个样本,其中20个得病。通过预测发现有24个得病,其中有18个是真实得病的。
这个情况下:
TP = 18
FP = 24-18=6
FN= 20-18 =2
TN= (100-24)-2 = 74
准确率 =
18
+
74
100
=
0.82
\frac{18+74}{100}=0.82
10018+74=0.82
查准率=
18
18
+
6
\frac{18}{18+6}
18+618
召回率=
18
18
+
2
\frac{18}{18+2}
18+218