【指标】Precision、Recall

本文详细解释了二元分类中的核心指标,包括准确率、查准率和召回率,并通过实例帮助理解这些概念的实际应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 二元分类指标

在这里插入图片描述
TP:预测为 真的样本 中 确实为 真的数量
FP:预测为 真的样本 中 确实为 假的数量
FN:预测为 假的样本 中 确实为 真的数量
TN:预测为 假的样本 中 确实为 假的数量

准确率 Accuracy:

正 确 预 测 的 样 本 = 正 确 预 测 为 1 + 正 确 预 测 为 0 的 总 样 本 数 \frac{正确预测的样本=正确预测为1+正确预测为0的}{总样本数} =1+0 = T P + T N A L L \frac{TP + TN}{ALL} ALLTP+TN

查准率 Precision:

所 有 预 测 为 真 的 样 本 中 真 的 数 量 预 测 为 真 样 本 的 数 量 \frac{所有预测为真的样本中真的数量}{预测为真样本的数量} = T P T P + F P \frac{TP}{TP + FP} TP+FPTP

召回率 Recall:

所 有 预 测 为 真 的 样 本 中 真 的 数 量 所 有 真 样 本 数 量 \frac{所有预测为真的样本中真的数量}{所有真样本数量} = T P T P + F N \frac{TP}{TP + FN} TP+FNTP

举例: 预测得病个数。
假设总共有100个样本,其中20个得病。通过预测发现有24个得病,其中有18个是真实得病的。
这个情况下:
TP = 18
FP = 24-18=6
FN= 20-18 =2
TN= (100-24)-2 = 74

准确率 = 18 + 74 100 = 0.82 \frac{18+74}{100}=0.82 10018+74=0.82
查准率= 18 18 + 6 \frac{18}{18+6} 18+618
召回率= 18 18 + 2 \frac{18}{18+2} 18+218

2. 参考

  1. https://www.jianshu.com/p/1ca37d729d0c
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值