【LeetCode】1605. 给定行和列的和求可行矩阵

给定两个非负整数数组,分别表示矩阵的行和列的和,文章介绍了如何使用贪心算法找到一个满足条件的非负整数矩阵。算法主要通过比较行和列的当前元素和,决定在当前位置放置哪个和,并更新行和列的剩余值。

1605. 给定行和列的和求可行矩阵

题目描述

给你两个非负整数数组 rowSum 和 colSum ,其中 rowSum[i] 是二维矩阵中第 i 行元素的和, colSum[j] 是第 j 列元素的和。换言之你不知道矩阵里的每个元素,但是你知道每一行和每一列的和。

请找到大小为 rowSum.length x colSum.length 的任意 非负整数 矩阵,且该矩阵满足 rowSum 和 colSum 的要求。

请你返回任意一个满足题目要求的二维矩阵,题目保证存在 至少一个 可行矩阵。


示例 1

输入:rowSum = [3,8], colSum = [4,7]
输出:[[3,0],
[1,7]]
解释:
第 0 行:3 + 0 = 3 == rowSum[0]
第 1 行:1 + 7 = 8 == rowSum[1]
第 0 列:3 + 1 = 4 == colSum[0]
第 1 列:0 + 7 = 7 == colSum[1]
行和列的和都满足题目要求,且所有矩阵元素都是非负的。
另一个可行的矩阵为:[[1,2],[3,5]]


示例 2

输入:rowSum = [5,7,10], colSum = [8,6,8]
输出:[[0,5,0],[6,1,0],[2,0,8]]


示例 3

输入:rowSum = [14,9], colSum = [6,9,8]
输出:[[0,9,5],[6,0,3]]


示例 4

输入:rowSum = [1,0], colSum = [1]
输出:[[1],[0]]


示例 5

输入:rowSum = [0], colSum = [0]
输出:[[0]]


提示

  • 1 <= rowSum.length, colSum.length <= 500
  • 0 <= rowSum[i], colSum[i] <= 108
  • sum(rowSum) == sum(colSum)

算法一:贪心

思路

没有思路?一个动画秒懂!附优化写法

算法情况

  • 时间复杂度:O(mn),其中 m 为矩阵长度, n 为矩阵宽度

  • 空间复杂度:O(1),返回的结果数组不计入消耗。

    在这里插入图片描述

代码

class Solution {
public:
    vector<vector<int>> restoreMatrix(vector<int>& rowSum, vector<int>& colSum) {
        int m = rowSum.size(), n = colSum.size();
        vector<vector<int>> mat(m, vector<int>(n));
        for(int i=0, j=0; i<m, j<n;){
            int x = rowSum[i], y = colSum[j];
            if(x < y){
                // rowsum 比较小,右边全为0,向下走
                mat[i][j] = x;
                rowSum[i] -= x;
                colSum[j] -= x;
                ++ i;
            }
            else{
                // colsum 比较小,下边全为0,向右走
                mat[i][j] = y;
                rowSum[i] -= y;
                colSum[j] -= y;
                ++ j;
            }
        }
        return mat;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值