sklearn 使用最小二乘法

本文详细介绍了如何使用sklearn中的最小二乘法进行线性回归,通过具体实例展示了特征的线性组合及损失函数定义,同时解释了(w1,...,wp)作为coef_,w0作为intercept_的概念。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

sklearn 使用最小二乘法

一. 说明:

sklearn中最小二乘法,拟合的直线是特征的线性组合:

y^(w,x)=w0+w1x1+...+wpxp\hat{y}(w, x) = w_0 + w_1 x_1 + ... + w_p x_py^(w,x)=w0+w1x1+...+wpxp

损失函数定义:

w=(w1,...,wp)Tw = (w_1,..., w_p)^Tw=(w1,...,wp)T

Xw=[x11x12...x1p⋮⋮⋱⋮xn1xn2...xnp][w1w2⋮wp]X w = \begin{bmatrix} x_{11}&x_{12} &...&x_{1p}\\ \vdots&\vdots &\ddots&\vdots\\ x_{n1}&x_{n2} &...&x_{np}\\ \end{bmatrix} \begin{bmatrix}w_1\\w_2\\\vdots\\w_p\end{bmatrix}Xw=x11xn1x12xn2......x1pxnpw1w2wp


loss function=min⁡w∣∣Xw−y∣∣22 loss\ function = \min_{w} || X w - y||_2^2loss function=wminXwy22

二. 举例使用

❗️ sklearn 中 (w1,...,wp)(w_1,..., w_p)(w1,...,wp) 作为 coef_ , w0w_0w0 作为 intercept_

# 最小二乘法用于sklearn中的线性回归,引入它。
from sklearn import linear_model
reg = linear_model.LinearRegression()

def foo(x1,x2): # w0 = 5, w1 = 2, w2 = 3
    return 2 * x1 + 3 * x2 + 5

"""生成测试数据 X,y
X 10行2列
y 10行1列
"""
X = [[i,(i+1)/2] for i in range(10)]
y = [foo(i,(i+1)/2) for i in range(10)]

# 根据参数拟合直线
reg.fit(X,y)

# 输出 w1,w2 = [2.8, 1.4]
print(reg.coef_)

# 输出 w0 = 5.8
print(reg.intercept_)

"""
    拟合直线: y = 2.8 * x1 + 1.4 * x2 + 5.8
"""

#  用生成的直线进行预测
print(reg.predict(X))
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值