题意: 给定nnn组数,每组两个数,aia_iai和bib_ibi。在第iii组数时,有三种操作:可以不选,如果aia_iai未被选过,可以选择aia_iai,或者bib_ibi没被选过,可以选择bib_ibi,但是一次最多选一个数。现在问nnn组数最多可以选择多少个。
题解: 考虑将aia_iai和bib_ibi连条边。假设最后有kkk个连通分量,考虑第jjj个连通分量,如果该连通分量的边数不小于点数,则加上点数,否则加上点数减111。
可以这么理解:考虑一个连通分量:
1 21\ 21 2
2 32 \ 32 3
3 43 \ 43 4
4 44\ 44 4
图中每选取一个点,就要切割点这个点的一条边。因此当这个图中有xxx点,x−1x-1x−1边时,只能选x−1x-1x−1个点,而当边数大于等于点数时,优先选择边数等于111的点,最后会剩下的点边数多于111的点再被选择。所以无论如何所有点都会被选择。
代码:
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
template<typename T>
inline T Read() {
T x = 0, f = 1;
char ch = getchar();
while(!isdigit(ch)) {if(ch == '-') f = -1; ch = getchar();}
while(isdigit(ch)) {x = (x << 3) + (x << 1) + ch - '0'; ch = getchar();}
return x * f;
}
#define read() Read<int>()
#define readl() Read<long long>()
const int N = 2e5 + 10;
vector<int> g[N];
int q[N], x[N], y[N];
int gp, res;
int b_s(int x) {
int l = 1, r = gp;
while(l < r) {
int mid = l + r >> 1;
if(q[mid] >= x) r = mid;
else l = mid + 1;
}
return l;
}
int vis[N], edge, point;
void dfs(int u) {
vis[u] = 1;
edge += g[u].size();
++point;
for(auto it : g[u]) {
if(vis[it]) continue;
dfs(it);
}
}
void solve(int num) {
int n = read(), last = n * 2;
for(int i = 1; i <= n; i++) x[i] = read(), y[i] = read();
for(int i = 1; i <= n; i++) q[i * 2 - 1] = x[i], q[i * 2] = y[i];
sort(q + 1, q + 1 + last);
gp = 0;
for(int i = 1; i <= last; ) {
q[++gp] = q[i];
int j = i + 1;
while(j <= last && q[i] == q[j]) ++j;
i = j;
}
last = gp;
for(int i = 1; i <= last; i++) g[i].clear(), vis[i] = 0;
for(int i = 1; i <= n; i++) {
x[i] = b_s(x[i]);
y[i] = b_s(y[i]);
g[x[i]].push_back(y[i]);
g[y[i]].push_back(x[i]);
}
res = 0;
for(int i = 1; i <= last; i++)
if(!vis[i]) {
edge = 0;
point = 0;
dfs(i);
edge /= 2;
res += point - 1;
if(edge >= point) ++res;
}
printf("Case #%d: %d\n", num, res);
}
int main()
{
int T = read();
for(int i = 1; i <= T; ++i) {
solve(i);
}
}