1、目标
2、相关概念
(1)EDA(Exploratory Data Analysis)也叫探索性数据分析
(2)EDA的价值:
熟悉数据集,了解数据集,对数据集进行验证来确定所获得数据集可以用于接下来的机器学习或者深度学习使用。
了解数据集中变量间的相互关系以及变量与预测值之间的存在关系。
进行数据处理以及特征工程的步骤,使数据集的结构和特征集让接下来的预测问题更加靠。
3、实现内容
- 载入各种数据科学以及可视化库:
数据科学库 pandas、numpy、scipy;
可视化库 matplotlib、seabon;
其他; - 载入数据:
载入训练集和测试集;
简略观察数据(head()+shape); - 数据总览:
通过describe()来熟悉数据的相关统计量
通过info()来熟悉数据类型 - 判断数据缺失和异常
查看每列的存在nan情况
异常值检测 - 了解预测值的分布
总体分布概况(无界约翰逊分布等)
查看skewness and kurtosis
查看预测值的具体频数 - 特征分为类别特征和数字特征,并对类别特征查看unique分布
- 数字特征分析
相关性分析
查看几个特征得 偏度和峰值
每个数字特征得分布可视化
数字特征相互之间的关系可视化多变量互相回归关系可视化 - 类型特征分析
unique分布
类别特征箱形图可视化
类别特征的小提琴图可视化
类别特征的柱形图可视化类别
特征的每个类别频数可视化(count_plot) - 用pandas_profiling生成数据报告
10、sort_values()函数用途
pandas中的sort_values()函数原理类似于SQL中的order by,可以将数据集依照某个字段中的数据进行排序,该函数即可根据指定列数据也可根据指定行的数据排序。
二、sort_values()函数的具体参数
用法:
DataFrame.sort_values(by=‘##’,axis=0,ascending=True, inplace=False, na_position=‘last’)
参数说明
参数 说明
by 指定列名(axis=0或’index’)或索引值(axis=1或’columns’)
axis 若axis=0或’index’,则按照指定列中数据大小排序;若axis=1或’columns’,则按照指定索引中数据大小排序,默认axis=0
ascending 是否按指定列的数组升序排列,默认为True,即升序排列
inplace 是否用排序后的数据集替换原来的数据,默认为False,即不替换
na_position {‘first’,‘last’},设定缺失值的显示位置
4、代码实现
#coding:utf-8
#1、载入各种数据科学以及可视化库
import warnings
##导入warnings包,利用过滤器来实现忽略警告语句。
warnings.filterwarnings('ignore')
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt#可视化工具
import seaborn as sns##要注意的是一旦导入了seaborn,matplotlib的默认作图风格就会被覆盖成seaborn的格式
"""
Seaborn是基于matplotlib的图形可视化python包。它提供了一种高度交互式界面,便于用户能够做出各种有吸引力的统计图表。
Seaborn是在matplotlib的基础上进行了更高级的API封装,从而使得作图更加容易,在大多数情况下使用seaborn能做出很具有吸引力的图,而使用matplotlib就能制作具有更多特色的图。应该把Seaborn视为matplotlib的补充,而不是替代物。同时它能高度兼容numpy与pandas数据结构以及scipy与statsmodels等统计模式。
"""
import missingno as msno
#这个库图形化缺失值,数据预处理之缺失值可视化处理
#2、载入数据
Train_data=pd.read_csv('/home/ysn7/PycharmProjects/Datawhale/used_car_train_20200313.csv',sep = ' ')#sep:以什么为分隔符
Test_data=pd.read_csv('/home/ysn7/PycharmProjects/Datawhale/used_car_testA_20200313.csv',sep = ' ')
"""
所有特征集均脱敏处理(方便大家观看)
name - 汽车编码
regDate - 汽车注册时间
model - 车型编码
brand - 品牌
bodyType - 车身类型
fuelType - 燃油类型
gearbox - 变速箱
power - 汽车功率
kilometer - 汽车行驶公里
notRepairedDamage - 汽车有尚未修复的损坏
regionCode - 看车地区编码seller - 销售方
offerType - 报价类型
creatDate - 广告发布时间
price - 汽车价格
v_0', 'v_1', 'v_2', 'v_3', 'v_4', 'v_5', 'v_6', 'v_7', 'v_8', 'v_9', 'v_10', 'v_11', 'v_12', 'v_13','v_14'(根据汽车的评
论、标签等大量信息得到的embedding向量)【人工构造 匿名特征】
"""
## 2) 简略观察数据(head()+shape)
#Train_data.head().append(Train_data.tail())
print(Train_data.head().append(Train_data.tail()))#开头的5组数据,追加末尾的5组数据
print(Train_data.head())
print(Train_data.shape)
print(Test_data.head().append(Test_data.tail()))
print(Test_data.shape)
#3总览数据概况
"""
1\describe中有每列的统计量,个数count、平均值mean、方差std、最小值min、中位数25% 50% 75% 、以
及最大值 看这个信息主要是瞬间掌握数据的大概的范围以及每个值的异常值的判断,比如有的时候会发现
999 9999 -1 等值这些其实都是nan的另外一种表达方式,有的时候需要注意下
2. info 通过info来了解数据每列的type,有助于了解是否存在除了nan以外的特殊符号异常
"""
print(Train_data.describe())
print(Train_data.info())
print(Test_data.describe())#比train少一个price
print(Test_data.info())
#4判断数据缺失和异常
##1)查看每列存在nan情况
print("---------")
print(Train_data.isnull().sum())
#nan可视化
missing=Train_data.isnull().sum()
missing=missing[missing>0]#只取大于0的
#是否用排序后的数据集替换原来的数据,默认为False,即不替换
missing.sort_values(inplace=True)
#用pandas中plot.bar()画柱状图
missing.plot.bar()
#print(missing.plot.bar())
plt.show()
print("======")#<class 'pandas.core.frame.DataFrame'>
print(type(Train_data))
#可视化看下缺省值
#Train_data.sample((250) #是pandas中随机抽取250行
msno.matrix(Train_data.sample((250)))
# msno.matrix(Train_data.sample((250)))
# 排版方式有不同,pandas是垂直排列,不可指定位置
# plt可以自己指定位置。pandas效果如下:
plt.show()
#条形图,msno.bar 是列的无效的简单可视化:
msno.bar(Train_data.sample(1000))
plt.show()
msno.matrix(Test_data.sample(250))
plt.show()
msno.bar(Test_data.sample(1000))
plt.show()#如果两个定义好,只写一句plt.show(),两张会重叠显示
#2)异常值检查
print("\\\\\\\\")
print(Train_data.info())
#可以发现除了notRepairedDamage 为object类型其他都为数字
# 这里我们把他的几个不同的值都进行显示就知道了
print("------")
print(Train_data['notRepairedDamage'].value_counts())
"""
0.0 111361
- 24324
1.0 14315
"""
#value_counts()是一种查看表格某列中有多少个不同值的快捷方法,
# 并计算每个不同值有在该列中有多少重复值。
#value_counts()是Series拥有的方法,
# 一般在DataFrame中使用时,需要指定对哪一列或行使用
#可以看出来‘ - ’也为空缺值,因为很多模型对nan有直接的处理,
# 这里我们先不做处理,先替换成nan
print(Train_data['notRepairedDamage'].replace('-',np.nan,inplace=True))
print(Train_data['notRepairedDamage'].value_counts())
print(Train_data.isnull().sum())
print(Test_data['notRepairedDamage'].replace('-',np.nan,inplace=True))
print(Test_data['notRepairedDamage'].value_counts())
print(Test_data.isnull().sum())
#以下两个类别特征严重倾斜,一般不会对预测有什么帮助,故这边先删掉,当然你也可以继续挖掘,但是一般意
#义不大
print(Train_data['seller'].value_counts())
print(Train_data["offerType"].value_counts())
del Train_data['seller']
del Train_data['offerType']
del Test_data['seller']
del Test_data['offerType']
#5、了解预测值的分布
print(Train_data['price'])
print(Train_data['price'].value_counts())
#1)总体分布概况(无界约翰逊分布)
import scipy.stats as st#统计分析
y=Train_data['price']
plt.figure(1);plt.title('Johnson SU')
#可以看到与使用matplotlib作的直方图最大的区别在于有一条密度曲线(KDE
#kde=False就不显示密度曲线
sns.distplot(y,kde=False,fit=st.johnsonsu)
plt.figure(2);plt.title('Normal')
sns.distplot(y,kde=False,fit=st.norm)
plt.figure(3);plt.title('Log Normal')
sns.distplot(y,kde=False,fit=st.lognorm)
plt.show()
"""
价格不服从正态分布,所以在进行回归之前,它必须进行转换。
虽然对数变换做得很好,但最佳拟合是无界约翰逊分布
"""
#2) 查看skewness and kurtosis
"""
我们一般会拿偏度和峰度来看数据的分布形态,而且一般会跟正态分布做比较,
我们把正态分布的偏度和峰度都看做零。如果我们在实操中,算到偏度峰度不为0,
即表明变量存在左偏右偏,或者是高顶平顶这么一说。
一.偏度(Skewness)
Definition:是描述数据分布形态的统计量,其描述的是某总体取值分布的对称性,简单来说就是数据的不对称程度。。
偏度是三阶中心距计算出来的。
(1)Skewness = 0 ,分布形态与正态分布偏度相同。
(2)Skewness > 0 ,正偏差数值较大,为正偏或右偏。长尾巴拖在右边,数据右端有较多的极端值。
(3)Skewness < 0 ,负偏差数值较大,为负偏或左偏。长尾巴拖在左边,数据左端有较多的极端值。
(4)数值的绝对值越大,表明数据分布越不对称,偏斜程度大。
二.峰度(Kurtosis)
Definition:偏度是描述某变量所有取值分布形态陡缓程度的统计量,简单来说就是数据分布顶的尖锐程度。
峰度是四阶标准矩计算出来的。
(1)Kurtosis=0 与正态分布的陡缓程度相同。
(2)Kurtosis>0 比正态分布的高峰更加陡峭——尖顶峰
(3)Kurtosis<0 比正态分布的高峰来得平台——平顶峰
"""
sns.distplot(Train_data['price'])
print("Skewness: %f" % Train_data['price'].skew())
print("Kurtosis: %f" % Train_data['price'].kurt())
Train_data.skew()
Train_data.kurt()
sns.distplot(Train_data.skew(),color='blue',axlabel= 'Skewness')
plt.show()
sns.distplot(Train_data.kurt(),color='orange',axlabel= 'Kurtness')
plt.show()
#3)查看预测值的具体频数
plt.hist(Train_data['price'], orientation= 'vertical',histtype = 'bar', color = 'red')
plt.show()
"""
查看频数, 大于20000得值极少,
其实这里也可以把这些当作特殊得值(异常值)直接用填充或者删掉,
再前面进行
"""
## log变换 z之后的分布较均匀,可以进行log变换进行预测,
# 这也是预测问题常用的trick
plt.hist(np.log(Train_data['price']), orientation = 'vertical',histtype = 'bar', color = 'red')
plt.show()
#6、特征分为类别特征和数字特征,并对类别特征查看unique分布
"""
数据类型
列name - 汽车编码
regDate - 汽车注册时间
model - 车型编码
brand - 品牌
bodyType - 车身类型
fuelType - 燃油类型
gearbox - 变速箱
power - 汽车功率
kilometer - 汽车行驶公里
notRepairedDamage - 汽车有尚未修复的损坏
regionCode - 看车地区编码
seller - 销售方 【以删】
offerType - 报价类型 【以删】
creatDate - 广告发布时间
price - 汽车价格
v_0', 'v_1', 'v_2', 'v_3', 'v_4', 'v_5', 'v_6', 'v_7', 'v_8', 'v_9', 'v_10', 'v_11', 'v_12', 'v_13','v_14'(根据汽车的评
论、标签等大量信息得到的embedding向量)【人工构造 匿名特征】
"""
# 分 离 label即预测值
Y_train = Train_data['price']
# 这个区别方式适用于没 有 直接label coding的数据
# 这 里 不适用, 需要 人为根据实际含义 来 区分
# 数字特征
# numeric_features = Train_data.select_dtypes(include=[np.number])
# numeric_features.columns
# # 类型特征
# categorical_features = Train_data.select_dtypes(include=[np.object])
# categorical_features.columns
numeric_features = ['power', 'kilometer', 'v_0', 'v_1', 'v_2', 'v_3', 'v_4', 'v_5', 'v_6', 'v_7', 'v_8', 'v_9', 'v_10', 'v_11', 'v_12', 'v_13','v_14' ]
categorical_features = ['name', 'model', 'brand', 'bodyType', 'fuelType', 'gearbox', 'notRepairedDamage', 'regionCode',]
# 特征nunique分布
for cat_fea in categorical_features:
print(cat_fea + "的特征分布如下:")
print("{}特征有个{}不同的值".format(cat_fea, Train_data[cat_fea].nunique()))
print(Train_data[cat_fea].value_counts())
#特征nunique分布
for cat_fea in categorical_features:
print(cat_fea + "的特征分布如下:")
print("{}特征有个{}不同的值".format(cat_fea, Test_data[cat_fea].nunique()))
print(Test_data[cat_fea].value_counts())
#7\数字特征分析
print(numeric_features.append('price'))
print(Train_data.head())
## 1) 相关性分析
price_numeric = Train_data[numeric_features]
correlation = price_numeric.corr()#corr()计算相关系数
print(correlation['price'].sort_values(ascending = False),'\n')
f , ax = plt.subplots(figsize = (7, 7))
plt.title('Correlation of Numeric Features with Price',y=1,size=16)
sns.heatmap(correlation,square = True, vmax=0.8)#热力图就是把这个二维的数组的数字用热力图的颜色值来表示,数字是一模一样的~
del price_numeric['price']
## 2) 查看几个特征得 偏度和峰值
for col in numeric_features:
print('{:15}'.format(col),
'Skewness: {:05.2f}'.format(Train_data[col].skew()) ,
' ' ,
'Kurtosis: {:06.2f}'.format(Train_data[col].kurt())
)
## 3) 每个数字特征得分布可视化
"""
df.melt() 是 df.pivot() 逆转操作函数
将列名转换为列数据(columns name → column values),重构DataFrame
如果说 df.pivot() 将长数据集转换成宽数据集,df.melt() 则是将宽数据集变成长数据集
"""
f = pd.melt(Train_data, value_vars=numeric_features)
"""
先sns.FacetGrid画出轮廓
然后用map填充内容
"""
g = sns.FacetGrid(f, col="variable", col_wrap=2, sharex=False, sharey=False)
g = g.map(sns.distplot, "value")
#可以看出匿名特征相对分布均匀
print("11111111")
## 4) 数字特征相互之间的关系可视化
sns.set()
columns = ['price', 'v_12', 'v_8' , 'v_0', 'power', 'v_5', 'v_2', 'v_6', 'v_1', 'v_14']
sns.pairplot(Train_data[columns],size = 2 ,kind ='scatter',diag_kind='kde')
plt.show()
print(Train_data.columns)
print(Y_train)
## 5) 多变量互相回归关系可视化
fig, ((ax1, ax2), (ax3, ax4), (ax5, ax6), (ax7, ax8), (ax9, ax10)) = plt.subplots(nrows=5, ncols=2, figsize=(24, 20))
# ['v_12', 'v_8' , 'v_0', 'power', 'v_5', 'v_2', 'v_6', 'v_1', 'v_14']
v_12_scatter_plot = pd.concat([Y_train,Train_data['v_12']],axis = 1)
sns.regplot(x='v_12',y = 'price', data = v_12_scatter_plot,scatter= True, fit_reg=True, ax=ax1)
v_8_scatter_plot = pd.concat([Y_train,Train_data['v_8']],axis = 1)
sns.regplot(x='v_8',y = 'price',data = v_8_scatter_plot,scatter= True, fit_reg=True, ax=ax2)
v_0_scatter_plot = pd.concat([Y_train,Train_data['v_0']],axis = 1)
sns.regplot(x='v_0',y = 'price',data = v_0_scatter_plot,scatter= True, fit_reg=True, ax=ax3)
power_scatter_plot = pd.concat([Y_train,Train_data['power']],axis = 1)
sns.regplot(x='power',y = 'price',data = power_scatter_plot,scatter= True, fit_reg=True, ax=ax4)
v_5_scatter_plot = pd.concat([Y_train,Train_data['v_5']],axis = 1)
sns.regplot(x='v_5',y = 'price',data = v_5_scatter_plot,scatter= True, fit_reg=True, ax=ax5)
v_2_scatter_plot = pd.concat([Y_train,Train_data['v_2']],axis = 1)
sns.regplot(x='v_2',y = 'price',data = v_2_scatter_plot,scatter= True, fit_reg=True, ax=ax6)
v_6_scatter_plot = pd.concat([Y_train,Train_data['v_6']],axis = 1)
sns.regplot(x='v_6',y = 'price',data = v_6_scatter_plot,scatter= True, fit_reg=True, ax=ax7)
v_1_scatter_plot = pd.concat([Y_train,Train_data['v_1']],axis = 1)
sns.regplot(x='v_1',y = 'price',data = v_1_scatter_plot,scatter= True, fit_reg=True, ax=ax8)
v_14_scatter_plot = pd.concat([Y_train,Train_data['v_14']],axis = 1)
sns.regplot(x='v_14',y = 'price',data = v_14_scatter_plot,scatter= True, fit_reg=True, ax=ax9)
v_13_scatter_plot = pd.concat([Y_train,Train_data['v_13']],axis = 1)
sns.regplot(x='v_13',y = 'price',data = v_13_scatter_plot,scatter= True, fit_reg=True, ax=ax10)
plt.show()
5\运行结果
/home/ysn7/anaconda3/bin/python /home/ysn7/PycharmProjects/Datawhale/eda_task2.py
SaleID name regDate ... v_12 v_13 v_14
0 0 736 20040402 ... -2.420821 0.795292 0.914762
1 1 2262 20030301 ... -1.030483 -1.722674 0.245522
2 2 14874 20040403 ... 1.565330 -0.832687 -0.229963
3 3 71865 19960908 ... -0.501868 -2.438353 -0.478699
4 4 111080 20120103 ... 0.931110 2.834518 1.923482
149995 149995 163978 20000607 ... 0.589167 -1.304370 -0.302592
149996 149996 184535 20091102 ... 2.553994 0.924196 -0.272160
149997 149997 147587 20101003 ... 2.290197 1.891922 0.414931
149998 149998 45907 20060312 ... 1.414937 0.431981 -1.659014
149999 149999 177672 19990204 ... 0.031724 -1.483350 -0.342674
[10 rows x 31 columns]
SaleID name regDate ... v_12 v_13 v_14
0 0 736 20040402 ... -2.420821 0.795292 0.914762
1 1 2262 20030301 ... -1.030483 -1.722674 0.245522
2 2 14874 20040403 ... 1.565330 -0.832687 -0.229963
3 3 71865 19960908 ... -0.501868 -2.438353 -0.478699
4 4 111080 20120103 ... 0.931110 2.834518 1.923482
[5 rows x 31 columns]
(150000, 31)
SaleID name regDate ... v_12 v_13 v_14
0 150000 66932 20111212 ... 4.800151 0.620011 -3.664654
1 150001 174960 19990211 ... -3.796107 -1.541230 -0.757055
2 150002 5356 20090304 ... 0.826562 0.138226 0.754033
3 150003 50688 20100405 ... 1.870379 0.366038 1.312775
4 150004 161428 19970703 ... -3.197685 -0.025678 -0.101290
49995 199995 20903 19960503 ... -1.207191 -1.981240 -0.357695
49996 199996 708 19991011 ... -2.075658 -1.154847 0.169073
49997 199997 6693 20040412 ... 1.137756 -1.390531 0.254420
49998 199998 96900 20020008 ... 2.465630 -0.911682 -2.057353
49999 199999 193384 20041109 ... 0.547628 2.094057 -1.552150
[10 rows x 30 columns]
(50000, 30)
SaleID name ... v_13 v_14
count 150000.000000 150000.000000 ... 150000.000000 150000.000000
mean 74999.500000 68349.172873 ... 0.000313 -0.000688
std 43301.414527 61103.875095 ... 1.288988 1.038685
min 0.000000 0.000000 ... -4.153899 -6.546556
25% 37499.750000 11156.000000 ... -1.057789 -0.437034
50% 74999.500000 51638.000000 ... -0.036245 0.141246
75% 112499.250000 118841.250000 ... 0.942813 0.680378
max 149999.000000 196812.000000 ... 11.147669 8.658418
[8 rows x 30 columns]
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150000 entries, 0 to 149999
Data columns (total 31 columns):
SaleID 150000 non-null int64
name 150000 non-null int64
regDate 150000 non-null int64
model 149999 non-null float64
brand 150000 non-null int64
bodyType 145494 non-null float64
fuelType 141320 non-null float64
gearbox 144019 non-null float64
power 150000 non-null int64
kilometer 150000 non-null float64
notRepairedDamage 150000 non-null object
regionCode 150000 non-null int64
seller 150000 non-null int64
offerType 150000 non-null int64
creatDate 150000 non-null int64
price 150000 non-null int64
v_0 150000 non-null float64
v_1 150000 non-null float64
v_2 150000 non-null float64
v_3 150000 non-null float64
v_4 150000 non-null float64
v_5 150000 non-null float64
v_6 150000 non-null float64
v_7 150000 non-null float64
v_8 150000 non-null float64
v_9 150000 non-null float64
v_10 150000 non-null float64
v_11 150000 non-null float64
v_12 150000 non-null float64
v_13 150000 non-null float64
v_14 150000 non-null float64
dtypes: float64(20), int64(10), object(1)
memory usage: 35.5+ MB
None
SaleID name ... v_13 v_14
count 50000.000000 50000.000000 ... 50000.000000 50000.000000
mean 174999.500000 68542.223280 ... -0.003147 0.001516
std 14433.901067 61052.808133 ... 1.286597 1.027360
min 150000.000000 0.000000 ... -4.123333 -6.112667
25% 162499.750000 11203.500000 ... -1.060428 -0.437920
50% 174999.500000 52248.500000 ... -0.035956 0.138799
75% 187499.250000 118856.500000 ... 0.941469 0.681163
max 199999.000000 196805.000000 ... 5.913273 2.624622
[8 rows x 29 columns]
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 50000 entries, 0 to 49999
Data columns (total 30 columns):
SaleID 50000 non-null int64
name 50000 non-null int64
regDate 50000 non-null int64
model 50000 non-null float64
brand 50000 non-null int64
bodyType 48587 non-null float64
fuelType 47107 non-null float64
gearbox 48090 non-null float64
power 50000 non-null int64
kilometer 50000 non-null float64
notRepairedDamage 50000 non-null object
regionCode 50000 non-null int64
seller 50000 non-null int64
offerType 50000 non-null int64
creatDate 50000 non-null int64
v_0 50000 non-null float64
v_1 50000 non-null float64
v_2 50000 non-null float64
v_3 50000 non-null float64
v_4 50000 non-null float64
v_5 50000 non-null float64
v_6 50000 non-null float64
v_7 50000 non-null float64
v_8 50000 non-null float64
v_9 50000 non-null float64
v_10 50000 non-null float64
v_11 50000 non-null float64
v_12 50000 non-null float64
v_13 50000 non-null float64
v_14 50000 non-null float64
dtypes: float64(20), int64(9), object(1)
memory usage: 11.4+ MB
None
---------
SaleID 0
name 0
regDate 0
model 1
brand 0
bodyType 4506
fuelType 8680
gearbox 5981
power 0
kilometer 0
notRepairedDamage 0
regionCode 0
seller 0
offerType 0
creatDate 0
price 0
v_0 0
v_1 0
v_2 0
v_3 0
v_4 0
v_5 0
v_6 0
v_7 0
v_8 0
v_9 0
v_10 0
v_11 0
v_12 0
v_13 0
v_14 0
dtype: int64
======
<class 'pandas.core.frame.DataFrame'>
/home/ysn7/anaconda3/lib/python3.6/site-packages/matplotlib/figure.py:2267: UserWarning: This figure includes Axes that are not compatible with tight_layout, so results might be incorrect.
warnings.warn("This figure includes Axes that are not compatible "
/home/ysn7/anaconda3/lib/python3.6/site-packages/matplotlib/figure.py:2267: UserWarning: This figure includes Axes that are not compatible with tight_layout, so results might be incorrect.
warnings.warn("This figure includes Axes that are not compatible "
\\\\
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150000 entries, 0 to 149999
Data columns (total 31 columns):
SaleID 150000 non-null int64
name 150000 non-null int64
regDate 150000 non-null int64
model 149999 non-null float64
brand 150000 non-null int64
bodyType 145494 non-null float64
fuelType 141320 non-null float64
gearbox 144019 non-null float64
power 150000 non-null int64
kilometer 150000 non-null float64
notRepairedDamage 150000 non-null object
regionCode 150000 non-null int64
seller 150000 non-null int64
offerType 150000 non-null int64
creatDate 150000 non-null int64
price 150000 non-null int64
v_0 150000 non-null float64
v_1 150000 non-null float64
v_2 150000 non-null float64
v_3 150000 non-null float64
v_4 150000 non-null float64
v_5 150000 non-null float64
v_6 150000 non-null float64
v_7 150000 non-null float64
v_8 150000 non-null float64
v_9 150000 non-null float64
v_10 150000 non-null float64
v_11 150000 non-null float64
v_12 150000 non-null float64
v_13 150000 non-null float64
v_14 150000 non-null float64
dtypes: float64(20), int64(10), object(1)
memory usage: 35.5+ MB
None
------
0.0 111361
- 24324
1.0 14315
Name: notRepairedDamage, dtype: int64
None
0.0 111361
1.0 14315
Name: notRepairedDamage, dtype: int64
SaleID 0
name 0
regDate 0
model 1
brand 0
bodyType 4506
fuelType 8680
gearbox 5981
power 0
kilometer 0
notRepairedDamage 24324
regionCode 0
seller 0
offerType 0
creatDate 0
price 0
v_0 0
v_1 0
v_2 0
v_3 0
v_4 0
v_5 0
v_6 0
v_7 0
v_8 0
v_9 0
v_10 0
v_11 0
v_12 0
v_13 0
v_14 0
dtype: int64
None
0.0 37249
1.0 4720
Name: notRepairedDamage, dtype: int64
SaleID 0
name 0
regDate 0
model 0
brand 0
bodyType 1413
fuelType 2893
gearbox 1910
power 0
kilometer 0
notRepairedDamage 8031
regionCode 0
seller 0
offerType 0
creatDate 0
v_0 0
v_1 0
v_2 0
v_3 0
v_4 0
v_5 0
v_6 0
v_7 0
v_8 0
v_9 0
v_10 0
v_11 0
v_12 0
v_13 0
v_14 0
dtype: int64
0 149999
1 1
Name: seller, dtype: int64
0 150000
Name: offerType, dtype: int64
0 1850
1 3600
2 6222
3 2400
4 5200
5 8000
6 3500
7 1000
8 2850
9 650
10 3100
11 5450
12 1600
13 3100
14 6900
15 3200
16 10500
17 3700
18 790
19 1450
20 990
21 2800
22 350
23 599
24 9250
25 3650
26 2800
27 2399
28 4900
29 2999
...
149970 900
149971 3400
149972 999
149973 3500
149974 4500
149975 3990
149976 1200
149977 330
149978 3350
149979 5000
149980 4350
149981 9000
149982 2000
149983 12000
149984 6700
149985 4200
149986 2800
149987 3000
149988 7500
149989 1150
149990 450
149991 24950
149992 950
149993 4399
149994 14780
149995 5900
149996 9500
149997 7500
149998 4999
149999 4700
Name: price, Length: 150000, dtype: int64
500 2337
1500 2158
1200 1922
1000 1850
2500 1821
600 1535
3500 1533
800 1513
2000 1378
999 1356
750 1279
4500 1271
650 1257
1800 1223
2200 1201
850 1198
700 1174
900 1107
1300 1105
950 1104
3000 1098
1100 1079
5500 1079
1600 1074
300 1071
550 1042
350 1005
1250 1003
6500 973
1999 929
...
21560 1
7859 1
3120 1
2279 1
6066 1
6322 1
4275 1
10420 1
43300 1
305 1
1765 1
15970 1
44400 1
8885 1
2992 1
31850 1
15413 1
13495 1
9525 1
7270 1
13879 1
3760 1
24250 1
11360 1
10295 1
25321 1
8886 1
8801 1
37920 1
8188 1
Name: price, Length: 3763, dtype: int64
/home/ysn7/anaconda3/lib/python3.6/site-packages/matplotlib/axes/_axes.py:6462: UserWarning: The 'normed' kwarg is deprecated, and has been replaced by the 'density' kwarg.
warnings.warn("The 'normed' kwarg is deprecated, and has been "
/home/ysn7/anaconda3/lib/python3.6/site-packages/matplotlib/axes/_axes.py:6462: UserWarning: The 'normed' kwarg is deprecated, and has been replaced by the 'density' kwarg.
warnings.warn("The 'normed' kwarg is deprecated, and has been "
/home/ysn7/anaconda3/lib/python3.6/site-packages/matplotlib/axes/_axes.py:6462: UserWarning: The 'normed' kwarg is deprecated, and has been replaced by the 'density' kwarg.
warnings.warn("The 'normed' kwarg is deprecated, and has been "
Skewness: 3.346487
/home/ysn7/anaconda3/lib/python3.6/site-packages/matplotlib/axes/_axes.py:6462: UserWarning: The 'normed' kwarg is deprecated, and has been replaced by the 'density' kwarg.
Kurtosis: 18.995183
warnings.warn("The 'normed' kwarg is deprecated, and has been "
/home/ysn7/anaconda3/lib/python3.6/site-packages/matplotlib/axes/_axes.py:6462: UserWarning: The 'normed' kwarg is deprecated, and has been replaced by the 'density' kwarg.
warnings.warn("The 'normed' kwarg is deprecated, and has been "
/home/ysn7/anaconda3/lib/python3.6/site-packages/matplotlib/axes/_axes.py:6462: UserWarning: The 'normed' kwarg is deprecated, and has been replaced by the 'density' kwarg.
warnings.warn("The 'normed' kwarg is deprecated, and has been "
name的特征分布如下:
name特征有个99662不同的值
708 282
387 282
55 280
1541 263
203 233
53 221
713 217
290 197
1186 184
911 182
2044 176
1513 160
1180 158
631 157
893 153
2765 147
473 141
1139 137
1108 132
444 129
306 127
2866 123
2402 116
533 114
1479 113
422 113
4635 110
725 110
964 109
1373 104
...
89083 1
95230 1
164864 1
173060 1
179207 1
181256 1
185354 1
25564 1
19417 1
189324 1
162719 1
191373 1
193422 1
136082 1
140180 1
144278 1
146327 1
148376 1
158621 1
1404 1
15319 1
46022 1
64463 1
976 1
3025 1
5074 1
7123 1
11221 1
13270 1
174485 1
Name: name, Length: 99662, dtype: int64
model的特征分布如下:
model特征有个248不同的值
0.0 11762
19.0 9573
4.0 8445
1.0 6038
29.0 5186
48.0 5052
40.0 4502
26.0 4496
8.0 4391
31.0 3827
13.0 3762
17.0 3121
65.0 2730
49.0 2608
46.0 2454
30.0 2342
44.0 2195
5.0 2063
10.0 2004
21.0 1872
73.0 1789
11.0 1775
23.0 1696
22.0 1524
69.0 1522
63.0 1469
7.0 1460
16.0 1349
88.0 1309
66.0 1250
...
141.0 37
133.0 35
216.0 30
202.0 28
151.0 26
226.0 26
231.0 23
234.0 23
233.0 20
198.0 18
224.0 18
227.0 17
237.0 17
220.0 16
230.0 16
239.0 14
223.0 13
236.0 11
241.0 10
232.0 10
229.0 10
235.0 7
246.0 7
243.0 4
244.0 3
245.0 2
209.0 2
240.0 2
242.0 2
247.0 1
Name: model, Length: 248, dtype: int64
brand的特征分布如下:
brand特征有个40不同的值
0 31480
4 16737
14 16089
10 14249
1 13794
6 10217
9 7306
5 4665
13 3817
11 2945
3 2461
7 2361
16 2223
8 2077
25 2064
27 2053
21 1547
15 1458
19 1388
20 1236
12 1109
22 1085
26 966
30 940
17 913
24 772
28 649
32 592
29 406
37 333
2 321
31 318
18 316
36 228
34 227
33 218
23 186
35 180
38 65
39 9
Name: brand, dtype: int64
bodyType的特征分布如下:
bodyType特征有个8不同的值
0.0 41420
1.0 35272
2.0 30324
3.0 13491
4.0 9609
5.0 7607
6.0 6482
7.0 1289
Name: bodyType, dtype: int64
fuelType的特征分布如下:
fuelType特征有个7不同的值
0.0 91656
1.0 46991
2.0 2212
3.0 262
4.0 118
5.0 45
6.0 36
Name: fuelType, dtype: int64
gearbox的特征分布如下:
gearbox特征有个2不同的值
0.0 111623
1.0 32396
Name: gearbox, dtype: int64
notRepairedDamage的特征分布如下:
notRepairedDamage特征有个2不同的值
0.0 111361
1.0 14315
Name: notRepairedDamage, dtype: int64
regionCode的特征分布如下:
regionCode特征有个7905不同的值
419 369
764 258
125 137
176 136
462 134
428 132
24 130
1184 130
122 129
828 126
70 125
827 120
207 118
1222 117
2418 117
85 116
2615 115
2222 113
759 112
188 111
1757 110
1157 109
2401 107
1069 107
3545 107
424 107
272 107
451 106
450 105
129 105
...
6324 1
7372 1
7500 1
8107 1
2453 1
7942 1
5135 1
6760 1
8070 1
7220 1
8041 1
8012 1
5965 1
823 1
7401 1
8106 1
5224 1
8117 1
7507 1
7989 1
6505 1
6377 1
8042 1
7763 1
7786 1
6414 1
7063 1
4239 1
5931 1
7267 1
Name: regionCode, Length: 7905, dtype: int64
name的特征分布如下:
name特征有个37453不同的值
55 97
708 96
387 95
1541 88
713 74
53 72
1186 67
203 67
631 65
911 64
2044 62
2866 60
1139 57
893 54
1180 52
2765 50
1108 50
290 48
1513 47
691 45
473 44
299 43
444 41
422 39
964 39
1479 38
1273 38
306 36
725 35
4635 35
..
46786 1
48835 1
165572 1
68204 1
171719 1
59080 1
186062 1
11985 1
147155 1
134869 1
138967 1
173792 1
114403 1
59098 1
59144 1
40679 1
61161 1
128746 1
55022 1
143089 1
14066 1
147187 1
112892 1
46598 1
159481 1
22270 1
89855 1
42752 1
48899 1
11808 1
Name: name, Length: 37453, dtype: int64
model的特征分布如下:
model特征有个247不同的值
0.0 3896
19.0 3245
4.0 3007
1.0 1981
29.0 1742
48.0 1685
26.0 1525
40.0 1409
8.0 1397
31.0 1292
13.0 1210
17.0 1087
65.0 915
49.0 866
46.0 831
30.0 803
10.0 709
5.0 696
44.0 676
21.0 659
11.0 603
23.0 591
73.0 561
69.0 555
7.0 526
63.0 493
22.0 443
16.0 412
66.0 411
88.0 391
...
124.0 9
193.0 9
151.0 8
198.0 8
181.0 8
239.0 7
233.0 7
216.0 7
231.0 6
133.0 6
236.0 6
227.0 6
220.0 5
230.0 5
234.0 4
224.0 4
241.0 4
223.0 4
229.0 3
189.0 3
232.0 3
237.0 3
235.0 2
245.0 2
209.0 2
242.0 1
240.0 1
244.0 1
243.0 1
246.0 1
Name: model, Length: 247, dtype: int64
brand的特征分布如下:
brand特征有个40不同的值
0 10348
4 5763
14 5314
10 4766
1 4532
6 3502
9 2423
5 1569
13 1245
11 919
7 795
3 773
16 771
8 704
25 695
27 650
21 544
15 511
20 450
19 450
12 389
22 363
30 324
17 317
26 303
24 268
28 225
32 193
29 117
31 115
18 106
2 104
37 92
34 77
33 76
36 67
23 62
35 53
38 23
39 2
Name: brand, dtype: int64
bodyType的特征分布如下:
bodyType特征有个8不同的值
0.0 13985
1.0 11882
2.0 9900
3.0 4433
4.0 3303
5.0 2537
6.0 2116
7.0 431
Name: bodyType, dtype: int64
fuelType的特征分布如下:
fuelType特征有个7不同的值
0.0 30656
1.0 15544
2.0 774
3.0 72
4.0 37
6.0 14
5.0 10
Name: fuelType, dtype: int64
gearbox的特征分布如下:
gearbox特征有个2不同的值
0.0 37301
1.0 10789
Name: gearbox, dtype: int64
notRepairedDamage的特征分布如下:
notRepairedDamage特征有个2不同的值
0.0 37249
1.0 4720
Name: notRepairedDamage, dtype: int64
regionCode的特征分布如下:
regionCode特征有个6971不同的值
419 146
764 78
188 52
125 51
759 51
2615 50
462 49
542 44
85 44
1069 43
451 41
828 40
757 39
1688 39
2154 39
1947 39
24 39
2690 38
238 38
2418 38
827 38
1184 38
272 38
233 38
70 37
703 37
2067 37
509 37
360 37
176 37
...
5512 1
7465 1
1290 1
3717 1
1258 1
7401 1
7920 1
7925 1
5151 1
7527 1
7689 1
8114 1
3237 1
6003 1
7335 1
3984 1
7367 1
6001 1
8021 1
3691 1
4920 1
6035 1
3333 1
5382 1
6969 1
7753 1
7463 1
7230 1
826 1
112 1
Name: regionCode, Length: 6971, dtype: int64
None
SaleID name regDate ... v_12 v_13 v_14
0 0 736 20040402 ... -2.420821 0.795292 0.914762
1 1 2262 20030301 ... -1.030483 -1.722674 0.245522
2 2 14874 20040403 ... 1.565330 -0.832687 -0.229963
3 3 71865 19960908 ... -0.501868 -2.438353 -0.478699
4 4 111080 20120103 ... 0.931110 2.834518 1.923482
[5 rows x 29 columns]
price 1.000000
v_12 0.692823
v_8 0.685798
v_0 0.628397
power 0.219834
v_5 0.164317
v_2 0.085322
v_6 0.068970
v_1 0.060914
v_14 0.035911
v_13 -0.013993
v_7 -0.053024
v_4 -0.147085
v_9 -0.206205
v_10 -0.246175
v_11 -0.275320
kilometer -0.440519
v_3 -0.730946
Name: price, dtype: float64
power Skewness: 65.86 Kurtosis: 5733.45
kilometer Skewness: -1.53 Kurtosis: 001.14
v_0 Skewness: -1.32 Kurtosis: 003.99
v_1 Skewness: 00.36 Kurtosis: -01.75
v_2 Skewness: 04.84 Kurtosis: 023.86
v_3 Skewness: 00.11 Kurtosis: -00.42
v_4 Skewness: 00.37 Kurtosis: -00.20
v_5 Skewness: -4.74 Kurtosis: 022.93
v_6 Skewness: 00.37 Kurtosis: -01.74
v_7 Skewness: 05.13 Kurtosis: 025.85
v_8 Skewness: 00.20 Kurtosis: -00.64
v_9 Skewness: 00.42 Kurtosis: -00.32
v_10 Skewness: 00.03 Kurtosis: -00.58
v_11 Skewness: 03.03 Kurtosis: 012.57
v_12 Skewness: 00.37 Kurtosis: 000.27
v_13 Skewness: 00.27 Kurtosis: -00.44
v_14 Skewness: -1.19 Kurtosis: 002.39
price Skewness: 03.35 Kurtosis: 019.00
/home/ysn7/anaconda3/lib/python3.6/site-packages/matplotlib/axes/_axes.py:6462: UserWarning: The 'normed' kwarg is deprecated, and has been replaced by the 'density' kwarg.
warnings.warn("The 'normed' kwarg is deprecated, and has been "
/home/ysn7/anaconda3/lib/python3.6/site-packages/matplotlib/axes/_axes.py:6462: UserWarning: The 'normed' kwarg is deprecated, and has been replaced by the 'density' kwarg.
warnings.warn("The 'normed' kwarg is deprecated, and has been "
/home/ysn7/anaconda3/lib/python3.6/site-packages/matplotlib/axes/_axes.py:6462: UserWarning: The 'normed' kwarg is deprecated, and has been replaced by the 'density' kwarg.
warnings.warn("The 'normed' kwarg is deprecated, and has been "
/home/ysn7/anaconda3/lib/python3.6/site-packages/matplotlib/axes/_axes.py:6462: UserWarning: The 'normed' kwarg is deprecated, and has been replaced by the 'density' kwarg.
warnings.warn("The 'normed' kwarg is deprecated, and has been "
/home/ysn7/anaconda3/lib/python3.6/site-packages/matplotlib/axes/_axes.py:6462: UserWarning: The 'normed' kwarg is deprecated, and has been replaced by the 'density' kwarg.
warnings.warn("The 'normed' kwarg is deprecated, and has been "
/home/ysn7/anaconda3/lib/python3.6/site-packages/matplotlib/axes/_axes.py:6462: UserWarning: The 'normed' kwarg is deprecated, and has been replaced by the 'density' kwarg.
warnings.warn("The 'normed' kwarg is deprecated, and has been "
/home/ysn7/anaconda3/lib/python3.6/site-packages/matplotlib/axes/_axes.py:6462: UserWarning: The 'normed' kwarg is deprecated, and has been replaced by the 'density' kwarg.
warnings.warn("The 'normed' kwarg is deprecated, and has been "
/home/ysn7/anaconda3/lib/python3.6/site-packages/matplotlib/axes/_axes.py:6462: UserWarning: The 'normed' kwarg is deprecated, and has been replaced by the 'density' kwarg.
warnings.warn("The 'normed' kwarg is deprecated, and has been "
/home/ysn7/anaconda3/lib/python3.6/site-packages/matplotlib/axes/_axes.py:6462: UserWarning: The 'normed' kwarg is deprecated, and has been replaced by the 'density' kwarg.
warnings.warn("The 'normed' kwarg is deprecated, and has been "
/home/ysn7/anaconda3/lib/python3.6/site-packages/matplotlib/axes/_axes.py:6462: UserWarning: The 'normed' kwarg is deprecated, and has been replaced by the 'density' kwarg.
warnings.warn("The 'normed' kwarg is deprecated, and has been "
/home/ysn7/anaconda3/lib/python3.6/site-packages/matplotlib/axes/_axes.py:6462: UserWarning: The 'normed' kwarg is deprecated, and has been replaced by the 'density' kwarg.
warnings.warn("The 'normed' kwarg is deprecated, and has been "
/home/ysn7/anaconda3/lib/python3.6/site-packages/matplotlib/axes/_axes.py:6462: UserWarning: The 'normed' kwarg is deprecated, and has been replaced by the 'density' kwarg.
warnings.warn("The 'normed' kwarg is deprecated, and has been "
/home/ysn7/anaconda3/lib/python3.6/site-packages/matplotlib/axes/_axes.py:6462: UserWarning: The 'normed' kwarg is deprecated, and has been replaced by the 'density' kwarg.
warnings.warn("The 'normed' kwarg is deprecated, and has been "
/home/ysn7/anaconda3/lib/python3.6/site-packages/matplotlib/axes/_axes.py:6462: UserWarning: The 'normed' kwarg is deprecated, and has been replaced by the 'density' kwarg.
warnings.warn("The 'normed' kwarg is deprecated, and has been "
/home/ysn7/anaconda3/lib/python3.6/site-packages/matplotlib/axes/_axes.py:6462: UserWarning: The 'normed' kwarg is deprecated, and has been replaced by the 'density' kwarg.
warnings.warn("The 'normed' kwarg is deprecated, and has been "
/home/ysn7/anaconda3/lib/python3.6/site-packages/matplotlib/axes/_axes.py:6462: UserWarning: The 'normed' kwarg is deprecated, and has been replaced by the 'density' kwarg.
warnings.warn("The 'normed' kwarg is deprecated, and has been "
/home/ysn7/anaconda3/lib/python3.6/site-packages/matplotlib/axes/_axes.py:6462: UserWarning: The 'normed' kwarg is deprecated, and has been replaced by the 'density' kwarg.
warnings.warn("The 'normed' kwarg is deprecated, and has been "
/home/ysn7/anaconda3/lib/python3.6/site-packages/matplotlib/axes/_axes.py:6462: UserWarning: The 'normed' kwarg is deprecated, and has been replaced by the 'density' kwarg.
warnings.warn("The 'normed' kwarg is deprecated, and has been "
11111111
Index(['SaleID', 'name', 'regDate', 'model', 'brand', 'bodyType', 'fuelType',
'gearbox', 'power', 'kilometer', 'notRepairedDamage', 'regionCode',
'creatDate', 'price', 'v_0', 'v_1', 'v_2', 'v_3', 'v_4', 'v_5', 'v_6',
'v_7', 'v_8', 'v_9', 'v_10', 'v_11', 'v_12', 'v_13', 'v_14'],
dtype='object')
0 1850
1 3600
2 6222
3 2400
4 5200
5 8000
6 3500
7 1000
8 2850
9 650
10 3100
11 5450
12 1600
13 3100
14 6900
15 3200
16 10500
17 3700
18 790
19 1450
20 990
21 2800
22 350
23 599
24 9250
25 3650
26 2800
27 2399
28 4900
29 2999
...
149970 900
149971 3400
149972 999
149973 3500
149974 4500
149975 3990
149976 1200
149977 330
149978 3350
149979 5000
149980 4350
149981 9000
149982 2000
149983 12000
149984 6700
149985 4200
149986 2800
149987 3000
149988 7500
149989 1150
149990 450
149991 24950
149992 950
149993 4399
149994 14780
149995 5900
149996 9500
149997 7500
149998 4999
149999 4700
Name: price, Length: 150000, dtype: int64
Process finished with exit code 0
参考文章:
https://tianchi.aliyun.com/notebook-ai/detail?postId=95457