线性分类器回顾
在样本空间中寻找一个超平面, 将不同类别的样本分开
但是将训练样本分开的超平面可能有很多, 哪一个更好呢?
“正中间”的: 鲁棒性最好, 泛化能力最强
怎么定义最合适的超平面呢?
我们使它向上平移和向下平移,触碰到样本的距离,间隔相等。
间隔(Margin)与支持向量(Support Vector)
支持向量机基本型
凸二次规划问题,能用优化计算包求解, 但可以有更高效的办法
对偶问题
对偶理论是一种将一个优化问题转化为另一个优化问题的方法,其中两个问题都有相同的最优解。这种方法通常涉及到两个问题:原始问题和对偶问题。原始问题是我们想要解决的问题,而对偶问题是通过对原始问题进行一些数学变换得到的问题。
也就是说可以将一个复杂的优化问题转化为一个更简单的问题,这有助于我们更好地理解和解决问题。
解的特性
求解方法 - SMO
特征空间映射
若不存在一个能正确划分两类样本的超平面, 怎么办?
将样本从原始空间映射到一个更高维的特征空间, 使样本在这个 特征空间内线性可分
如果原始空间是有限维(属性数有限),那么一定存在一个 高维特征空间使样本线性可分
核函数 (Kernel Function)
基本思路: 设计核函数
绕过显式考虑特征映射、以及计算高维内积的困难
Mercer 定理:若一个对称函数所对应的核矩阵半正定, 则它就能作为核函数来使用
任何一个核函数,都隐式地定义了一个RKHS (Reproducing Kernel Hilbert Space, 再生核希尔伯特空间)
“核函数选择”成为决定支持向量机性能的关键!
我们常用核函数有:
线性核函数
多项式核函数
高斯核函数
软间隔
现实中很难确定合适的核函数,使训练样本在特征空间中线性可分。即便貌似线性可分,也很难断定是否是因过拟合造成的。
引入软间隔 (Soft Margin), 允许在一些样本上不满足约束