SVM-支持向量机

本文回顾了线性分类器中的关键概念,如如何选择最优超平面以提高鲁棒性和泛化能力,介绍支持向量和间隔的概念,讨论了对偶问题及SMO求解方法。还探讨了特征空间映射、核函数的作用,以及在实际应用中如何处理软间隔和选择合适的核函数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

线性分类器回顾

在样本空间中寻找一个超平面, 将不同类别的样本分开

但是将训练样本分开的超平面可能有很多, 哪一个更好呢?

正中间”的: 鲁棒性最好, 泛化能力最强

怎么定义最合适的超平面呢?

我们使它向上平移和向下平移,触碰到样本的距离,间隔相等。

间隔(Margin)支持向量(Support Vector)

支持向量机基本型

凸二次规划问题,能用优化计算包求解, 但可以有更高效的办法

对偶问题

        对偶理论是一种将一个优化问题转化为另一个优化问题的方法,其中两个问题都有相同的最优解。这种方法通常涉及到两个问题:原始问题和对偶问题。原始问题是我们想要解决的问题,而对偶问题是通过对原始问题进行一些数学变换得到的问题。

        也就是说可以将一个复杂的优化问题转化为一个更简单的问题,这有助于我们更好地理解和解决问题。

解的特性

求解方法 - SMO

特征空间映射

若不存在一个能正确划分两类样本的超平面, 怎么办?

将样本从原始空间映射到一个更高维的特征空间, 使样本在这个 特征空间内线性可分

如果原始空间是有限维(属性数有限),那么一定存在一个 高维特征空间使样本线性可分

核函数 (Kernel Function)

基本思路: 设计核函数

绕过显式考虑特征映射、以及计算高维内积的困难

Mercer 定理:若一个对称函数所对应的核矩阵半正定, 则它就能作为核函数来使用

任何一个核函数,都隐式地定义了一个RKHS (Reproducing Kernel Hilbert Space, 再生核希尔伯特空间)

“核函数选择”成为决定支持向量机性能的关键!

我们常用核函数有:

线性核函数

多项式核函数

高斯核函数

软间隔

现实中很难确定合适的核函数,使训练样本在特征空间中线性可分。即便貌似线性可分,也很难断定是否是因过拟合造成的。

引入软间隔 (Soft Margin), 允许在一些样本上不满足约束

优化目标

替代损失    (Surrogate Loss)

软间隔支持向量机

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值