模型性能评估指标之回归:MAE、MSE、RMSE、MAPE、R2

1.前言

有监督模型,主要分为两种,即分类、回归。
在回归任务中(对连续值的预测),常见的评估指标(metrics)主要包括:

  • 平均绝对误差 MAE(Mean Absolute Error);
  • 均方误差 MSE(Mean Square Error);
  • 均方根误差 RMSE(Root Mean Square Error);
  • 平均绝对百分比误差 MAPE(Mean Absolute Percentage Error)。

其中,MAE 和 MSE 使用较为广泛。需要根据不同场景的不同评价指标进行选择。
在这里插入图片描述
通常,sklearn.metrics 中评估函数以 _score 结尾返回一个值,越大越好,而函数以 _error 或者 _loss 结尾则返回一个值,越小越好

2.适用场景

回归模型行中,评估主要关注两个方面:拟合度、准确度。

  • 拟合度,指我们的预测值,是否拟合了足够的信息。常用决定系数R2-score衡量。
  • 准确度,指预测值与真实值之间的差异大小。常用均方误差(MSE)、均方根误差(RMSE)、平均绝对差(MAE)、平均绝对百分比误差(MAPE)来进行衡量。

注意:
1、决定系数和矫正决定系数都是基于均值进行计算,如果数据集中有异常点存在,会对该指标有较大的影响。也就是说,这两个指标对异常点较敏感,因此它们更适用于噪声较少的数据集。对于噪声较多的数据集可以考虑 M

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值