1.前言
有监督模型,主要分为两种,即分类、回归。
在回归任务中(对连续值的预测),常见的评估指标(metrics)主要包括:
- 平均绝对误差 MAE(Mean Absolute Error);
- 均方误差 MSE(Mean Square Error);
- 均方根误差 RMSE(Root Mean Square Error);
- 平均绝对百分比误差 MAPE(Mean Absolute Percentage Error)。
其中,MAE 和 MSE 使用较为广泛。需要根据不同场景的不同评价指标进行选择。
通常,sklearn.metrics 中评估函数以 _score
结尾返回一个值,越大越好,而函数以 _error 或者 _loss
结尾则返回一个值,越小越好。
2.适用场景
回归模型行中,评估主要关注两个方面:拟合度、准确度。
拟合度
,指我们的预测值,是否拟合了足够的信息。常用决定系数R2-score衡量。准确度
,指预测值与真实值之间的差异大小。常用均方误差(MSE)、均方根误差(RMSE)、平均绝对差(MAE)、平均绝对百分比误差(MAPE)来进行衡量。
注意:
1、决定系数和矫正决定系数都是基于均值进行计算,如果数据集中有异常点存在,会对该指标有较大的影响。也就是说,这两个指标对异常点较敏感
,因此它们更适用于噪声较少的数据集
。对于噪声较多的数据集可以考虑 M