模型损失的loss不下降或下降很慢

这里主要记录我碰到的原因

model.eval()

当一个大的模型model中内含bert等大模型时,大模型使用model.eval()时,Bert也同时使用bert.eval()

学习率太小

val loss一直再下降,但下降很慢,有可能时学习率太小了的原因。

### 加速扩散模型损失函数收敛速度的方法 #### 选择合适的网络架构 为了提高扩散模型的训练效率,采用更高效的神经网络结构至关重要。研究表明,使用更深更宽的U-Net架构可以显著提升性能[^1]。此外,引入注意力机制能够增强模型捕捉全局特征的能力。 #### 自动调整时间步数与时序安排策略 传统做法是在整个训练期间固定变的时间跨度内执行前向传播与反向传播操作;然而这并非总是最优解。论文提出了无需额外监督信号即可动态调节各阶段所需迭代次数的技术——即自动微分(AutoDiffusion),它允许算法自主决定何时停止当前轮次并进入下一个状态转换周期,从而实现更快捷有效的参数更新过程。 #### 利用预训练权重初始化 如果目标任务领域存在相似的数据集,则可以从已有的大规模通用视觉表征学习成果出发,利用迁移学习的思想对新建立起来的目标检测器实施良好的开端设定。具体而言就是把源域里经过充分锻炼过的卷积层作为初始值赋予待调优对象,这样仅有助于缓解过拟合现象的发生几率,而且还能加快整体流程达到稳定点的速度。 #### 应用混合精度训练技术 借助半精度浮点数(FP16)代替标准单精度格式(Single Precision FP32),可以在牺牲太多准确性的情况下大幅度减少内存占用量以及计算资源消耗水平。现代GPU硬件普遍支持此类特性,因此合理配置环境变量使得框架能充分利用这些优势就显得尤为重要了。 #### 实施梯度累积方案 当批次大小受限于显存容量而无法进一步增大时,可以通过累加多轮mini-batch所产生的梯度后再统一应用的方式来模拟较大规模样本带来的效果。这样做既保持了原有设备上的高效运作模式又间接扩大了有效batch size,进而促进了loss value趋向最小化的速率。 ```python for i in range(accumulation_steps): optimizer.zero_grad() outputs = model(inputs) loss = criterion(outputs, targets) loss.backward() # Accumulate gradients over multiple mini batches if (i + 1) % accumulation_steps == 0: optimizer.step() # Perform optimization step after accumulating enough gradient information ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值