通配符匹配
题目描述:
给定一个字符串 (s) 和一个字符模式 (p) ,实现一个支持 '?' 和 '*' 的通配符匹配。'?' 可以匹配任何单个字符。'*' 可以匹配任意字符串(包括空字符串)。两个字符串完全匹配才算匹配成功。说明:s 可能为空,且只包含从 a-z 的小写字母。p 可能为空,且只包含从 a-z 的小写字母,以及字符 ? 和 *。
class Solution {
public boolean isMatch(String s, String p) {
// 采用动态规划算法
int sLen = s.length();
int pLen = p.length();
boolean[][] dp = new boolean[sLen][pLen]; // 定义:p的前n个字符是否可以匹配s的前m个字符
if(sLen == 0 && pLen > 0){ // 特殊判断
for(int i = 0 ; i<pLen ; i++){
if(p.charAt(i) == '*'){
if(i == pLen-1) return true;
}else return false;
}
}else if(sLen > 0 && pLen == 0){
return false;
}else if(sLen == 0 && pLen == 0){
return true;
}
// 边界条件初始化
boolean flag = true; // 只出现一次符号(字母 或者 ?)的标记
if(p.charAt(0) == '*') dp[0][0] = true;
if(p.charAt(0) == '?' || p.charAt(0) == s.charAt(0)){
flag = false;
dp[0][0] = true;
}
for(int i = 1 ; i<pLen ; i++){
if(dp[0][i-1] && p.charAt(i) == '*'){
dp[0][i] = true;
}else if(flag && dp[0][i-1] && (p.charAt(i) == s.charAt(0) || p.charAt(i) == '?') && p.charAt(i-1) == '*'){
dp[0][i] = true;
flag = false;
}
}
for(int i = 1 ; i<sLen ; i++){
if(p.charAt(0) == '*'){
dp[i][0] = true;
}
}
// 动态规划过程
for(int i = 1; i<sLen ; i++){
for(int j = 1; j<pLen ; j++){
if(p.charAt(j) == s.charAt(i) || p.charAt(j) == '?'){ // 字母相等
dp[i][j] = dp[i-1][j-1]; // 取决于除去当前符号匹配的规划过程
}else if(p.charAt(j) == '*'){ // p的当前的符号为'*'
dp[i][j] = dp[i][j-1] | // 匹配没有符号时
dp[i-1][j]; // 匹配多个符号时
}
}
}
return dp[sLen-1][pLen-1];
}
}
典型的动态规划类型问题,主要难点就是找出转移方程以及存储数组,这里定义二维数组dp[m][n]为前字符串p的前n个可匹配字符串s的前m个的状态(匹配成功为true,失败为false),分析可得转移方程为:
- 当字符串s的最后一个元素等于p的最后一个元素或者p的最后一个元素为'?'时
dp[m][n] = dp[m-1][n-1]
- 当字符串s的最后一个元素等于'*'时
dp[m][n] = dp[m][n-1](匹配空) | dp[m-1][n](匹配一个或者多个)