Leetcode 通配符匹配

本文介绍了一种使用动态规划解决通配符匹配问题的方法。该方法支持'?'和'*'两种通配符,并详细解释了如何通过构建二维数组来记录匹配状态,最终实现字符串与模式的完全匹配。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

通配符匹配

题目描述:

给定一个字符串 (s) 和一个字符模式 (p) ,实现一个支持 '?' 和 '*' 的通配符匹配。
'?' 可以匹配任何单个字符。
'*' 可以匹配任意字符串(包括空字符串)。
两个字符串完全匹配才算匹配成功。
说明:
   s 可能为空,且只包含从 a-z 的小写字母。
   p 可能为空,且只包含从 a-z 的小写字母,以及字符 ? 和 *。

题目链接

class Solution {
    public boolean isMatch(String s, String p) {
        // 采用动态规划算法
        int sLen = s.length();
        int pLen = p.length();
        boolean[][] dp = new boolean[sLen][pLen]; // 定义:p的前n个字符是否可以匹配s的前m个字符
        if(sLen == 0 && pLen > 0){ // 特殊判断
            for(int i = 0 ; i<pLen ; i++){
                if(p.charAt(i) == '*'){
                    if(i == pLen-1) return true;
                }else return false;
            }
        }else if(sLen > 0 && pLen == 0){
            return false;
        }else if(sLen == 0 && pLen == 0){
            return true;
        }

        // 边界条件初始化
        boolean flag = true; // 只出现一次符号(字母 或者 ?)的标记
        if(p.charAt(0) == '*') dp[0][0] = true;
        if(p.charAt(0) == '?' || p.charAt(0) == s.charAt(0)){
            flag = false;
            dp[0][0] = true;
        }

        for(int i = 1 ; i<pLen ; i++){
            if(dp[0][i-1] && p.charAt(i) == '*'){
                dp[0][i] = true;
            }else if(flag && dp[0][i-1] && (p.charAt(i) == s.charAt(0) || p.charAt(i) == '?') && p.charAt(i-1) == '*'){ 
                dp[0][i] = true;
                flag = false;
            }
        }

        for(int i = 1 ; i<sLen ; i++){
            if(p.charAt(0) == '*'){
                dp[i][0] = true;
            }
        }

        // 动态规划过程
        for(int i = 1; i<sLen ; i++){
            for(int j = 1; j<pLen ; j++){
                if(p.charAt(j) == s.charAt(i) || p.charAt(j) == '?'){ // 字母相等
                    dp[i][j] = dp[i-1][j-1]; // 取决于除去当前符号匹配的规划过程
                }else if(p.charAt(j) == '*'){ // p的当前的符号为'*'
                    dp[i][j] = dp[i][j-1] | // 匹配没有符号时
                    dp[i-1][j]; // 匹配多个符号时
                }
            }
        }
        return dp[sLen-1][pLen-1];
    }
}

典型的动态规划类型问题,主要难点就是找出转移方程以及存储数组,这里定义二维数组dp[m][n]为前字符串p的前n个可匹配字符串s的前m个的状态(匹配成功为true,失败为false),分析可得转移方程为:

  • 当字符串s的最后一个元素等于p的最后一个元素或者p的最后一个元素为'?'时
dp[m][n] = dp[m-1][n-1]
  • 当字符串s的最后一个元素等于'*'时
dp[m][n] = dp[m][n-1](匹配空) | dp[m-1][n](匹配一个或者多个)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值