ES 位置查询之geo_point

本文介绍Elasticsearch中的Geo查询方法,包括距离查询、矩形范围查询和多边形范围查询等,帮助读者掌握地理数据检索技能。

创建语句

PUT geo
{
  "mappings": {
    "properties": {
      "name":{
        "type": "keyword"
      },
      "location":{
        "type": "geo_point"
      }
    }
  }
}

其中 location字段的分词器类型为 geo_point, 这样就可以对地理相关的的数据进行操作, geo是地理的geographic单词缩写, 当为这个类型时数据格式为  "经度, 纬度"

geo_distance query

查询距离一个经纬点指定距离范围内的其它数据

geo_distance query可以查找在一个中心点指定范围内的地理点文档

GET geo/_search
{
  "query": {
    "bool": {
      "must": [
        {
          "match_all": {}
        }
      ],
      "filter": [
        {
          "geo_distance": {
            "distance": "200km",
            "location": {
              "lat": 39.08,
              "lon": 117.19
            }
          }
        }
      ]
    }
  }
}

查询距离位置点 lat(精度), lon(纬度) 200km的文档数据, 查询语句中的位置为天津, 最后得到结果为北京

按距离查询经纬点的远近排序

GET geo/_search
{
  "query": {
    "match_all": {}
  },
  "sort": [
    {
      "_geo_distance": {
        "location": "39.9088145109,116.3973999023",
        "unit": "km"
      }
    }
  ]
}

geo_bounding_box query 矩形范围查询

geo_bounding_box query用于查找落入指定的矩形内的地理坐标。查询中由两个点确定一个矩形

GET geo/_search
{
  "query": {
    "bool": {
      "must": [
        {"match_all": {}}
      ],
      "filter": [
        {"geo_bounding_box": {
          "location": {
            "top_left": {
              "lat": 38.48,
              "lon": 106.23
            },
            "bottom_right": {
              "lat": 28.68,
              "lon": 115.85
            }
          }
        }}
      ]
    }
  }
}

查询语句就如图片一样, geo_bounding_box 表示一个方框, 传入左上和右下两个坐标点确定一个矩形, 查出的结果就是 西安和郑州

 geo_polygon query 多边形范围内查询

这种是多个点确定一个图形范围, 不仅仅是三角形, 图片是三角形, N边形都可以

GET geo/_search
{
  "query": {
    "bool": {
      "must": [
        {
          "match_all": {}
        }
      ],
      "filter": [
        {
          "geo_polygon": {
            "location": {
              "points": [
                {
                  "lat": 40.84,
                  "lon": 111.75
                },
                {
                  "lat": 29.56,
                  "lon": 106.55
                },
                {
                  "lat": 31.23,
                  "lon": 121.47
                }
              ]
            }
          }
        }
      ]
    }
  }
}

查出来的结果为 西安和郑州

Elasticsearch 8.x 中,`geo_point` 数据类型用于存储经纬度坐标,支持地理位置查询和聚合操作。要显式定义 `geo_point` 字段,可以在创建索引时通过映射(mapping)指定字段类型为 `geo_point`。 ### 创建索引并定义 `geo_point` 字段 以下是一个创建索引并在映射中显式定义 `geo_point` 字段的示例: ```json PUT /locations { "mappings": { "properties": { "name": { "type": "text" }, "location": { "type": "geo_point" } } } } ``` 在这个示例中,`location` 字段被定义为 `geo_point` 类型,可以存储经纬度坐标[^2]。 ### 插入包含 `geo_point` 数据的文档 插入文档时,可以通过以下几种方式提供 `geo_point` 数据: #### 1. 使用经纬度数组 ```json POST /locations/_doc/1 { "name": "New York", "location": [-73.935242, 40.730610] // [经度, 纬度] } ``` #### 2. 使用经纬度字符串 ```json POST /locations/_doc/2 { "name": "London", "location": "51.5074, -0.1278" // "纬度, 经度" } ``` #### 3. 使用包含 `lat` 和 `lon` 字段的对象 ```json POST /locations/_doc/3 { "name": "Sydney", "location": { "lat": -33.8688, "lon": 151.2093 } } ``` ### 查询 `geo_point` 数据 Elasticsearch 提供了多种查询方式来处理 `geo_point` 数据,例如: #### 1. `geo_distance` 查询 ```json GET /locations/_search { "query": { "geo_distance": { "distance": "200km", "location": { "lat": 40.730610, "lon": -73.935242 } } } } ``` 此查询将返回 `location` 字段在纽约 200 公里范围内的所有文档。 #### 2. `geo_bounding_box` 查询 ```json GET /locations/_search { "query": { "geo_bounding_box": { "location": { "top_left": { "lat": 41.730610, "lon": -74.935242 }, "bottom_right": { "lat": 39.730610, "lon": -72.935242 } } } } } ``` 此查询将返回 `location` 字段位于指定矩形区域内的所有文档。 ### 聚合 `geo_point` 数据 Elasticsearch 还支持对 `geo_point` 数据进行聚合操作,例如: #### `geo_histogram` 聚合 ```json GET /locations/_search { "size": 0, "aggs": { "location_grid": { "geo_histogram": { "field": "location", "interval": "10km" } } } } ``` 此聚合将 `location` 字段按 10 公里间隔进行分组,并返回每个分组的文档数量。 ### 显式定义 `geo_point` 字段的注意事项 1. **字段名称**:确保字段名称与映射中定义的 `geo_point` 字段名称一致。 2. **数据格式**:插入文档时,必须使用 Elasticsearch 支持的 `geo_point` 数据格式之一。 3. **性能优化**:对于大规模数据集,建议使用 `geo_point` 类型的稀疏索引特性来优化性能。 通过以上步骤,可以在 Elasticsearch 8.x 中显式定义和使用 `geo_point` 数据类型,以支持地理位置相关的查询和分析需求。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值