题目要求:
给定一个非负整数数组 A, A 中一半整数是奇数,一半整数是偶数。
对数组进行排序,以便当 A[i] 为奇数时,i 也是奇数;当 A[i] 为偶数时, i 也是偶数。
你可以返回任何满足上述条件的数组作为答案。
示例:
输入:[4,2,5,7]
输出:[4,5,2,7]
解释:[4,7,2,5],[2,5,4,7],[2,7,4,5] 也会被接受。
思路:
双指针法,维护两个指针,一个even指针,表示偶数,一个odd指针,表示奇数。even指针一直指向偶数下标,并判断数组的偶数下标里的数是否真的时偶数,若是偶数,even就加2,继续判断,若不是偶数,就暂时卡在这里。奇数odd同理。当奇数偶数同时卡住时,就交换奇偶下标里的数值,然后继续依次判断奇偶下标。
注意:因为题目给的是一半奇数一半偶数,因此,只可能奇偶下标同时卡住,不可能出现一个卡住另一个成功遍历完数组的情况。因此,要么奇偶下标同时卡住,要么同时超过数组长度,循环结束。
代码:
public static int[] sortArrayByParityII(int[] A) {
int odd=1;
int even=0;
while (odd<A.length&&even<A.length){
while (even<A.length&&A[even]%2==0){
even+=2;
}
while (odd<A.length&&A[odd]%2==1){
odd+=2;
}
if(odd<A.length&&even<A.length){
int temp=A[even];
A[even]=A[odd];
A[odd]=temp;
even+=2;
odd+=2;
}
}
return A;
}