cv2.dnn.blobFromImage的用法参数

本文详细介绍OpenCV中的blobFromImage函数,解析其如何通过调整图片大小、减去平均值及缩放像素值等步骤,实现对图片的有效预处理,以适应神经网络的输入要求。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

参数说明:
blobFromImage(  InputArray image, 
  				double scalefactor=1.0, 
    			const Size& size = Size(),
  				const Scalar& mean = Scalar(), 
  				bool swapRB = false, 
  				bool crop = false,
  				int ddepth = CV_32F
  				)

blobFromImage主要是用来对图片进行预处理。包含两个主要过程:
整体像素值减去平均值(mean)
通过缩放系数(scalefactor)对图片像素值进行缩放

下面我对这些参数,给大家提供给一个简单的介绍:
image:这个就是我们将要输入神经网络进行处理或者分类的图片。
mean:需要将图片整体减去的平均值,如果我们需要对RGB图片的三个通道分别减去不同的值,那么可以使用3组平均值,如果只使用一组,那么就默认对三个通道减去一样的值。减去平均值(mean):为了消除同一场景下不同光照的图片,对我们最终的分类或者神经网络的影响,我们常常对图片的R、G、B通道的像素求一个平均值,然后将每个像素值减去我们的平均值,这样就可以得到像素之间的相对值,就可以排除光照的影响。
scalefactor:当我们将图片减去平均值之后,还可以对剩下的像素值进行一定的尺度缩放,它的默认值是1,如果希望减去平均像素之后的值,全部缩小一半,那么可以将scalefactor设为1/2。
size:这个参数是我们神经网络在训练的时候要求输入的图片尺寸。
swapRB:OpenCV中认为我们的图片通道顺序是BGR,但是我平均值假设的顺序是RGB,所以如果需要交换R和G,那么就要使swapRB=true

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值