JVM-堆外内存泄漏

0 实战参考

1 现象及原因

堆外内存

java 8下是指除了Xmx设置的java堆(java 8以下版本还包括MaxPermSize设定的持久代大小)外,java进程使用的其他内存。主要包括:DirectByteBuffer分配的内存,JNI里分配的内存,线程栈分配占用的系统内存,jvm本身运行过程分配的内存,codeCache,java 8里还包括metaspace元数据空间。

  • 大量使用堆外内存:java应用所占内存明显大于xmx指定的堆最大内存空间。如java应用占7G内存,指定堆最大内存为4G,那么很可能出现了堆外内存泄漏。

    • 原因:比如存在不断加载class对象、主动分配堆外内存等场景。如jetty、faskJson使用或配置问题都出现过堆外内存泄漏

  • GC停顿时间长:GC停顿时间达到S级别,比如超过1S。

    • 原因:堆外内存不断增加,又没触发full gc的情况下,会使用swap虚拟内存来保证内存充足。但磁盘操作相比内存耗时长,使用大量swap内存会导致gc时间过长!

2 命令与工具

2.1 常用命令

  • top:是Linux下常用的性能分析工具,能够实时显示系统中各个进程的资源占用状况,类似于Windows的任务管理器。

  • jmap:查看JVM内存使用情况。

    • jmap -heap pid 展示pid的整体堆信息。( 堆内存初始化配置、当前使用情况)

  • jstat:命令查看jvm的GC情况 

    • 各分区使用情况:

    • 各分区使用占比:

    • 注意:jstat输出中的MC对应于元空间提交的大小,而不是容量。  

2.2 堆外内存分析工具

2.2.1 NMT使用

【介绍】

  • NMT(Native Memory Tracking)是 HotSpot JVM 引入的跟踪 JVM 内部使用的本地内存,可以通过 jcmd 工具访问 NMT 数据。

  • NMT 不跟踪非 JVM 代码的内存分配,本地代码里的内存泄露需要使用操作系统支持的工具来定位。

【使用】

  • 启动命令: -XX:NativeMemoryTracking=[off | summary | detail]。

  • 启用 NMT 会带来 5-10% 的性能损失。

【举例】

jcmd <pid> VM.native_memory summary 输出:

Total:  reserved=664192KB,  committed=253120KB  <--- total memory tracked by Native Memory Tracking

-     Java Heap (reserved=516096KB, committed=204800KB)  <--- Java Heap
                (mmap: reserved=516096KB, committed=204800KB)

-     Class (reserved=6568KB, committed=4140KB)     <--- class metadata
            (classes #665)                          <--- number of loaded classes
            (malloc=424KB, #1000)                   <--- malloc'd memory, #number of malloc
            (mmap: reserved=6144KB, committed=3716KB)

-     Thread (reserved=6868KB, committed=6868KB)
            (thread #15)                            <--- number of threads
            (stack: reserved=6780KB, committed=6780KB) <--- memory used by thread stacks
            (malloc=27KB, #66)
            (arena=61KB, #30)                       <--- resource and handle areas

-     Code (reserved=102414KB, committed=6314KB)
           (malloc=2574KB, #74316)
           (mmap: reserved=99840KB, committed=3740KB)

-     GC (reserved=26154KB, committed=24938KB)
           (malloc=486KB, #110)
           (mmap: reserved=25668KB, committed=24452KB)

-     Compiler (reserved=106KB, committed=106KB)
               (malloc=7KB, #90)
               (arena=99KB, #3)

-     Internal (reserved=586KB, committed=554KB)
               (malloc=554KB, #1677)
               (mmap: reserved=32KB, committed=0KB)

-     Symbol (reserved=906KB, committed=906KB)
             (malloc=514KB, #2736)
             (arena=392KB, #1)

-     Memory Tracking (reserved=3184KB, committed=3184KB)
                      (malloc=3184KB, #300)

-     Pooled Free Chunks (reserved=1276KB, committed=1276KB)
                         (malloc=1276KB)

-     Unknown (reserved=33KB, committed=33KB)
              (arena=33KB, #1)

3 定位流程

3.1 排除堆内存泄漏

是否频繁出发full gc,内存泄漏对象会场景无法回收,从而导致频繁full gc

3.2 分析堆外内存

如果出现堆外内存泄漏,可能导致

  • 堆外内存呈现线性增长的趋势

  • 堆外内存占用空间多

3.3 定位具体原因

使用堆外内存分析工具,定位到具体原因。

  1. 监控到具体对象

  2. 监控到具体调用入口

4 配置项

  1. -Xmx:设置JVM最大可用内存

  2. -Xms:设置JVM初始内存

  3. -Xmn:新生代大小

  4. -Xss:设置每个线程的堆栈大小

  5. -XX:MetaspaceSize:设定触发FGC的阈值,实际使用内存按需分配;并不会一开始就分配设置大小的内存,其实从jstat -gc命令可以发现这一点。

    1. MetaspaceSize和MaxMetaspaceSize设置一样大

    2. MetaspaceSize值建议设置为应用稳定运行后1.2-1.5倍

  6. -XX:MaxMetaspaceSize:元空间最大可分配内存

  7. -XX:MaxDirectMemorySize:用于设置直接内存的最大值

G1 垃圾回收器参数

  1. -XX:MaxGCPauseMillis:用于设置目标停顿时间,G1 会尽力达成。

5 调优思路

堆外内存溢出可能场景包括

  • 线程过多导致:

  • 不断创建class类对象:

  • JNI方法分配本地内存:

  • 其他:

  1. xms与xmx建议设置一样:动态扩缩容会导致gc,内存足够的情况下可以保持一致。

  2. XX:MaxMetaspaceSize与XX:MaxDirectMemorySize设置一样:同理元空间初始值与最大值也建议保持一致

内容概要:本文档详细介绍了一个基于MATLAB实现的跨尺度注意力机制(CSA)结合Transformer编码器的多变量时间序列预测项目。项目旨在精准捕捉多尺度时间序列特征,提升多变量时间序列的预测性能,降低模型计算复杂度与训练时间,增强模型的解释性和可视化能力。通过跨尺度注意力机制,模型可以同时捕获局部细节和全局趋势,显著提升预测精度和泛化能力。文档还探讨了项目面临的挑战,如多尺度特征融合、多变量复杂依赖关系、计算资源瓶颈等问题,并提出了相应的解决方案。此外,项目模型架构包括跨尺度注意力机制模块、Transformer编码器层和输出预测层,文档最后提供了部分MATLAB代码示例。 适合人群:具备一定编程基础,尤其是熟悉MATLAB和深度学习的科研人员、工程师和研究生。 使用场景及目标:①需要处理多变量、多尺度时间序列数据的研究和应用场景,如金融市场分析、气象预测、工业设备监控、交通流量预测等;②希望深入了解跨尺度注意力机制和Transformer编码器在时间序列预测中的应用;③希望通过MATLAB实现高效的多变量时间序列预测模型,提升预测精度和模型解释性。 其他说明:此项目不仅提供了一种新的技术路径来处理复杂的时间序列数据,还推动了多领域多变量时间序列应用的创新。文档中的代码示例和详细的模型描述有助于读者快速理解和复现该项目,促进学术和技术交流。建议读者在实践中结合自己的数据集进行调试和优化,以达到最佳的预测效果。
内容概要:本文档详细介绍了基于MATLAB实现多目标差分进化(MODE)算法进行无人机三维路径规划的项目实例。项目旨在提升无人机在复杂三维环境中路径规划的精度、实时性、多目标协调处理能力、障碍物避让能力和路径平滑性。通过引入多目标差分进化算法,项目解决了传统路径规划算法在动态环境和多目标优化中的不足,实现了路径长度、飞行安全距离、能耗等多个目标的协调优化。文档涵盖了环境建模、路径编码、多目标优化策略、障碍物检测与避让、路径平滑处理等关键技术模块,并提供了部分MATLAB代码示例。 适合人群:具备一定编程基础,对无人机路径规划和多目标优化算法感兴趣的科研人员、工程师和研究生。 使用场景及目标:①适用于无人机在军事侦察、环境监测、灾害救援、物流运输、城市管理等领域的三维路径规划;②通过多目标差分进化算法,优化路径长度、飞行安全距离、能耗等多目标,提升无人机任务执行效率和安全性;③解决动态环境变化、实时路径调整和复杂障碍物避让等问题。 其他说明:项目采用模块化设计,便于集成不同的优化目标和动态环境因素,支持后续算法升级与功能扩展。通过系统实现和仿真实验验证,项目不仅提升了理论研究的实用价值,还为无人机智能自主飞行提供了技术基础。文档提供了详细的代码示例,有助于读者深入理解和实践该项目。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值