8G显存玩转AI换衣IDM-VTON(支持MAC、WIN)

最近AI换衣项目IDM-VTON挺火哈,我也火速体验了一把。效果也是很不错,相对OOTDiffusion的换衣效果提升了不少。

那部署的时候遇到比较大的问题是高显存占用!太吃配置了!24G的显卡占用了18G左右。于是花了点时间改成

使用了低精度模型进行加载(多个版本,下文有介绍),并且支持MAC系统,现在只需要最低8G显存,就能运行这个项目啦!(整合包在文章末尾自取)五一前就该发的,我这拖延症.....

效果示例

同一个人物,换不同的衣服

配置要求

WIN

  • Windwos10/11操作系统
  • 英伟达显卡GPU 8G及以上

Mac

  • MacOS(Apple Silicon - M1/M2/M3)
  • 推荐内存8G以上。

版本说明

这次制作了多个版本的启动器,Windows用户根据你的显存配置只需选择其中一个启动就可以,这里简单介绍下。

【CPU卸载版本】

该版本将一些计算任务从GPU转移到CPU来执行,以此来减少GPU的负载和显存使用。速度会略慢于纯GPU计算版本,但是输出的图像质量与纯GPU计算版本相同。

比如说,相同都是低显存模式的CPU卸载版本(8G)比纯GPU版本(10G)处理的速度慢,但是两个版本输出的图像质量是一样的。

【纯GPU版本】

如果你的显存足够大,显卡足够好,请无脑选这个版本启动。

值得注意的是,无论你选择的是CPU卸载版本,还是纯GPU版本,高显存的输出的图像质量高于低显存版本的。

比如说,高显存的纯GPU版本(16.5G)的图像质量>纯GPU版本中等显存(12G)>CPU卸载版本低显存版本(8G)

使用方法

上传一张准备换衣的图片

使用自动生成的遮罩。

保持默认选项。使用该选项会

使用自动裁剪和调整大小

上传服饰图。并写上服装描述(可选)

点击生成按钮

生成结果

下载图片点击右上角的下载箭头或者右键图片另存为即可。

整合包获取

👇🏻👇🏻👇🏻什么?是不是收费的?👇🏻👇🏻👇🏻

关注公众号,发送【换衣】关键字获取整合包。

如果发了关键词没回复你!记得看下复制的时候是不是把空格给粘贴进去了!

制作不易,如果本文对您有帮助,还请点个免费的赞或在看!感谢您的阅读!

<think>好的,我需要处理用户关于下载IDM-VTON模型的请求。首先,用户明确询问下载链接,但根据之前的引用内容,似乎没有直接提供官方下载地址。引用1提到需要加载模型,并给出代码示例,但路径是用户自己指定的。引用2描述了使用整合工具的情况,可能模型已经包含在工具中,用户需要按照教程安装和使用。接下来,我需要确认IDM-VTON模型是否是开源项目。如果是,通常官方仓库如GitHub会有下载说明。用户可能需要从HuggingFace或类似的平台获取。但根据现有信息,没有明确的链接,所以可能需要引导用户到官方渠道查找。 另外,用户可能遇到下载问题,比如找不到链接或需要权限,因此需要提供常见解决方法,比如检查文档、联系作者或社区支持。同时,确保用户遵循许可协议,避免法律问题。最后,生成相关问题应围绕安装、使用、配置和故障排除,帮助用户全面了解后续步骤。需要保持回答真实可靠,避免猜测不确定的信息,并建议用户查阅官方资源。</think>关于IDM-VTON模型的获取,根据引用内容显示该模型需要通过特定代码加载,但未直接提供官方下载链接。建议通过以下步骤获取: 1. **官方渠道获取** 该模型可能需要从GitHub开源项目下载,请访问项目仓库查看下载说明。部分AI模型托管在Hugging Face平台,可尝试搜索`IDM-VTON`关键词[^1] 2. **整合工具内置** 根据引用[2]的描述,某些整合包已包含该模型。下载整合工具后,模型文件通常存放在`/models`或`/checkpoints`目录中,通过代码`model.load_model('path_to_model_checkpoint')`即可调用[^1] 3. **注意事项** - 下载前请确认模型许可协议 - 部分模型需要申请权限(如学术用途) - 推荐通过论文作者提供的链接获取最新版本 ```python # 模型加载验证示例(需先下载模型文件) from idm_vton import IDM_VTON try: model = IDM_VTON() model.load_model('./idm_vton_weights.pth') # 替换实际路径 print("模型加载成功") except FileNotFoundError: print("模型文件未找到,请检查下载路径") ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值