随机种子的作用,以Pytorch为例

本文详细解释了随机种子在深度学习中的作用,通过PyTorch示例展示了如何统一初始化以保证每次训练结果的一致性。设置`torch.backends.cudnn`选项会影响运行效率与结果稳定性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

随机种子的作用是为了初始化参数
保证每一次初始化的参数都一样
这样每一次训练出来的结果都会保持一致
下面以pytorch为例设置随机种子

def setup_seed(seed):
    random.seed(seed)
    np.random.seed(seed) #for numpy
    torch.manual_seed(seed)  # for CPU
    torch.cuda.manual_seed(seed)  # for current GPU
    torch.cuda.manual_seed_all(seed)  # for all GPU
    torch.backends.cudnn.benchmark = False
    torch.backends.cudnn.enabled = False
    torch.backends.cudnn.deterministic = True

torch.backends.cudnn.benchmark = False
torch.backends.cudnn.enabled = False
两者都设置为True有利于提高运算效率
但是使用非确定性算法导致每一次运行的结果不一样

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值