简介
Pyts库针对时间序列的分解,只有一种算法,即奇异谱分析(Singular Spectrum Analysis),它能将时间序列分解为趋势和噪音两部分,它的名字的由来和奇异值分解有关,实际上SSA的实质就是将协方差矩阵进行奇异值分解(singular value decomposition),再对得到的奇异值进行谱分析变换,所以它的算法包含以下过程(由于比较复杂,此处简要叙述重点,如需详情请自行查看wiki或者搜索引擎):
1.嵌入矩阵(embedding),或者其实就是我们之前学过的窗口变换,把时间序列变为存在很多窗口的矩阵。即以下这种形式,
2.对协方差矩阵进行奇异值分解(这步是关键)。这里的协方差矩阵S或者说相关系数矩阵S其实就是XX^T,怎么算的可能有人不理解,我放一个油管视频的图在这里。
注意图片里手放的第二排。然后在SSA里有一点令人迷惑的是…它确定了这个神奇的公式:
并且此处U是正交的,代入之后总之就变成了以下东西:
其中带根号的就是特征值也就是油管图片中的西格玛符号。
3.分组(grouping)。简单理解就是把总的索引分成了m个子集。
4.对角线平均化(Diagonal averaging)。过程依然复杂,总之就是把上面的重组成了m个子序列。
API
class pyts.decomposition.SingularSpectrumAnalysis
(window_size=4, groups=None)
参数 | 说明 |
---|---|
window_size | int or float,窗口大小,小数就是总长度x小数,窗口的实际大小会通过以下公式计算:max(2, ceil(window_size * n_timestamps(序列长度,或者说特征数目))) |
groups | None, int or array-like,算法第三步的分组数目,如果为None,直接跳过分组,如果为整数则为分组数目,同时组边界是np.linspace(0, window_size, groups + 1).astype(‘int64’),或者可以传入索引数组 |
就两个参数,具体说明一下第二个分组参数:
1.关于索引数组。
假如传入以下索引数组: