问题来源
问题描述
有两堆石子,数量任意,可以不同。游戏开始由两个人轮流取石子。游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子;二是可以在两堆中同时取走相同数量的石子。最后把石子全部取完者为胜者。现在给出初始的两堆石子的数目,如果轮到你先取,假设双方都采取最好的策略,问最后你是胜者还是败者。
输入
输入包含若干行,表示若干种石子的初始情况,其中每一行包含两个非负整数a和b,表示两堆石子的数目,a和b都不大于1,000,000,000。
输出
输出对应也有若干行,每行包含一个数字1或0,如果最后你是胜者,则为1,反之,则为0。
例子
AC的代码
#include<cmath>
#include <iostream>
using namespace std;
int main()
{
int a, b,k;
while (cin >> a >> b)
{
k = ((a > b) ? (a - b) : (b - a));
if (((a > b) ? b : a) == floor((double)k * ((sqrt(5.0) + 1.0) / 2.0)))
{
cout << "0" << endl;
}
else
{
cout << "1" << endl;
}
}
}
解题思路
威佐夫博奕:对于一个面对一个奇异局势的人,那么他必输。
前几个奇异局势:(0,0)、(1,2)、(3,5)、(4,7)、(6,10)、(8,13)、(9,15)、(11,18)、(12,20)
规律:对于(ak,bk)(ak<bk)ak为前面奇异局势未出现的最小自然数,bk=ak+k。
奇异矩阵的性质:
(1)任何自然数都包含在一个且仅有一个奇异局势中。
(2)任意操作都可将奇异局势变为非奇异局势。
(3)采用适当的方法,可以将非奇异局势变为奇异局势。
判断是否为奇异局势:
奇异局势满足k=bk-ak,ak=k*(1+aqrt(5))/2。
思路:判断给出的是否为奇异局势,如果是,结果必然为输,否则赢。