2周题-POJ-1067--取石子游戏

本文详细解析了一款基于博弈论的石子游戏算法,通过分析游戏规则和胜利条件,介绍了如何利用数学公式判断游戏的胜负,并提供了代码实现,深入探讨了威佐夫博奕策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题来源

POJ-1067

问题描述

有两堆石子,数量任意,可以不同。游戏开始由两个人轮流取石子。游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子;二是可以在两堆中同时取走相同数量的石子。最后把石子全部取完者为胜者。现在给出初始的两堆石子的数目,如果轮到你先取,假设双方都采取最好的策略,问最后你是胜者还是败者。

输入

输入包含若干行,表示若干种石子的初始情况,其中每一行包含两个非负整数a和b,表示两堆石子的数目,a和b都不大于1,000,000,000。

输出

输出对应也有若干行,每行包含一个数字1或0,如果最后你是胜者,则为1,反之,则为0。

例子

在这里插入图片描述

AC的代码

#include<cmath>
#include <iostream>
using namespace std;
int main()
{
	int a, b,k;
	while (cin >> a >> b)
	{

		k = ((a > b) ? (a - b) : (b - a));

		if (((a > b) ? b : a) == floor((double)k * ((sqrt(5.0) + 1.0) / 2.0)))

		{

			cout << "0" << endl;
		}
		else
		{
			cout << "1" << endl;
		}
	}
}

解题思路

威佐夫博奕:对于一个面对一个奇异局势的人,那么他必输。
前几个奇异局势:(0,0)、(1,2)、(3,5)、(4,7)、(6,10)、(8,13)、(9,15)、(11,18)、(12,20)
规律:对于(ak,bk)(ak<bk)ak为前面奇异局势未出现的最小自然数,bk=ak+k。
奇异矩阵的性质:
(1)任何自然数都包含在一个且仅有一个奇异局势中。
(2)任意操作都可将奇异局势变为非奇异局势。
(3)采用适当的方法,可以将非奇异局势变为奇异局势。
判断是否为奇异局势:
奇异局势满足k=bk-ak,ak=k*(1+aqrt(5))/2。
思路:判断给出的是否为奇异局势,如果是,结果必然为输,否则赢。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值