查找轮廓的凸包
void convexHull (InputArray points,
OutputArray hull,
bool clockwise = false,
bool returnPoints = true
)
参数解析:
//InputArray points:输入存储类型为vector<Point>或Mat 的二维点集;
//OutputArray hull:输出的凸包的点集(凸包的点集是原始点集的子集);
//bool clockwise = false:方向标志。假定坐标系的 X 轴指向右侧,Y 轴指向上方,如果为 true,则输出凸包的方向为顺时针方向。否则,它逆时针方向。假定坐标系的 X 轴指向右侧,Y 轴指向上方;
//bool returnPoints = true: 在矩阵的情况下,如果为true时,这个函数返回凸包的点。否则,返回点的索引。当这个输出是vector时,这个参数可以忽视。输出的类型取决于vector的类型;
查找轮廓的多边形
void approxPolyDP(InputArray curve,
OutputArray approxCurve,
double epsilon,
bool closed
)
参数解析:
//InputArray curve:输入轮廓,可以是一个 vector<Point> 类型或者一个 Mat 类型的点集。需要确保输入的点集是一个封闭轮廓;
//OutputArray approxCurve:输出的多边形近似,可以是一个:vector<Point> 类型或者一个 Mat 类型的点集;
//double epsilon:指定近似精度,也就是近似多边形和原始轮廓之间的最大距离。
//bool closed :指定输出的多边形是否为封闭图形。如果为 true,则输出多边形是封闭的,否则为非封闭的;
查找轮廓的矩形
Rect boundingRect(InputArray array)
参数解析:
//InputArray array:输入轮廓,可以是一个 vector<Point> 类型或者一个 Mat 类型的点集;
查找轮廓的外接圆
void minEnclosingCircle (InputArray points,
Point2f & center,
float & radius
)
参数解析:
//InputArray points:输入的点集,可以是一个 vector<Point> 类型或者一个 Mat 类型的点集;
//Point2f & center:输出的圆心坐标,类型为 Point2f;
//float & radius:输出的圆半径;
代码演示:
#include<opencv2/opencv.hpp>
#include<iostream>
using namespace cv;
using namespace std;
Mat srcImg, grayImg;
int threshValue = 50, maxValue = 255;
int main(int argc, char** argv)
{
srcImg = imread("C:/picture/test.jpg");
if (srcImg.empty())
{
std::cout << "Could not load image!";
return -1;
}
cvtColor(srcImg, grayImg, CV_BGR2GRAY);
blur(grayImg, grayImg, Size(3, 3));
Mat threshImg;
threshold(grayImg, threshImg, threshValue, maxValue, THRESH_BINARY);
vector<vector<Point>>contours;
findContours(threshImg, contours, RETR_EXTERNAL, CHAIN_APPROX_NONE);
vector<vector<Point>>approxcurve(contours.size());
vector<Rect>rect(contours.size());
vector<Point2f>center(contours.size());
vector<float>radius(contours.size());
for (size_t i = 0; i < contours.size(); i++)
{
approxPolyDP(contours[i], approxcurve[i], 3, true);
rect[i]=boundingRect(contours[i]);
minEnclosingCircle(contours[i], center[i], radius[i]);
}
for (size_t i = 0; i < contours.size(); i++)
{
circle(srcImg, center[i], radius[i],Scalar(0, 0, 255));
}
//drawContours(srcImg, approxcurve, -1, Scalar(0, 0, 255),-1);
imshow("srcImg", srcImg);
waitKey(0);
return 0;
}