Ubuntu (22.04.3) 安装openstructure

官方文档 https://openstructure.org/docs/2.8/install/

提前下载https://files.wwpdb.org/pub/pdb/data/monomers/components.cif.gz

一、有sudo权限,可安装默认功能版本

sudo aptitude install openstructure
chemdict_tool create components.cif.gz compounds.chemlib

二、无sudo权限,安装编译版本

# 安装依赖 boost-1.76
wget https://archives.boost.io/release/1.76.0/source/boost_1_76_0.tar.gz
tar zxvf boost_1_76_0.tar.gz
cd boost_1_76_0

# 修改 bootstrap.sh PREFIX 和 PYTHON
# PREFIX=<BOOST DIR TO INSTALL>
# PYTHON=<SYSTEM PYTHON>
vim bootstrap.sh 

# build
./b2

# install to <BOOST DIR TO INSTALL>
./b2 install
# 安装QT5 for QT5Xml
git clone https://code.qt.io/qt/qtbase.git

cd qtbase

# select 5.15 version
git checkout -b 5.15 origin/5.15

# configure set <YOUR DIR to Install>
./configure --prefix=<YOUR DIR to Install>

gmake

gmake install
# 安装openmm
wget -c https://www.doxygen.nl/files/doxygen-1.12.0.linux.bin.tar.gz
tar zxvf doxygen-1.12.0.linux.bin.tar.gz
cd doxygen-1.12.0
# set INSTALL=<YOUR INSTALL DIR>
make


git clone git@github.com:openmm/openmm.git

cd openmm
cmake . -DCMAKE_INSTALL_PREFIX=<YOUR DIR>/installs/openmm8.1.2 -DDOXYGEN_EXECUTABLE=<YOUR DIR>/installs/doxygen_1.12.0/bin/doxygen
# 编译openstructure

git clone https://git.scicore.unibas.ch/schwede/openstructure.git
cd openstructure

cmake . -DCOMPOUND_LIB=<YOUR DIR>/compounds.chemlib -DCMAKE_INSTALL_PREFIX=<YOUR DIR>/installs/openstructure -DUSE_RPATH=ON -DUSE_SHADER=ON -DENABLE_MM=ON -DCOMPILE_TMTOOLS=ON -DCOMPILE_TMTOOLS=ON -DOPEN_MM_PLUGIN_DIR=<YOUR DIR>/installs/openmm8.1.2/lib/plugins -DEIGEN3_INCLUDE_DIR=<YOUR DIR>/installs/eigen3.4/include/eigen3 -DOPEN_MM_INCLUDE_DIR=<YOUR DIR>/installs/openmm8.1.2/include -DOPEN_MM_LIBRARY=<YOUR DIR>/installs/openmm8.1.2/lib

# 输出以下配置信息

'''
   Install Prefix                        (-DPREFIX) : <YOUR DIR>/installs/openstructure
   RPath in install                   (-DUSE_RPATH) : ON
   Info support                     (-DENABLE_INFO) : ON
   Graphical interface               (-DENABLE_GUI) : ON
   OpenGL support                    (-DENABLE_GFX) : ON
   Shader support                    (-DUSE_SHADER) : ON
   SpaceNav Device support         (-DENABLE_SPNAV) : OFF
   OpenMM support                     (-DENABLE_MM) : ON
   OpenMM plugins            (-DOPEN_MM_PLUGIN_DIR) : <YOUR DIR>/installs/openmm8.1.2/lib/plugins
   Parasail alignment library   (-DENABLE_PARASAIL) : OFF
   Optimize                            (-DOPTIMIZE) : OFF
   Profiling support                    (-DPROFILE) : OFF
   Double Precision        (-DUSE_DOUBLE_PRECISION) : OFF
   Compound Lib                    (-DCOMPOUND_LIB) : <YOUR DIR>/compounds.chemlib
   TMAlign and TMScore          (-DCOMPILE_TMTOOLS) : ON
   Static Libraries               (-DENABLE_STATIC) : OFF
   Debian/Ubuntu directory layout (-DUBUNTU_LAYOUT) : OFF
   Hidden object visibility  (-DHIDDEN_VISIBILITY) : OFF
'''

<think>嗯,用户问的是如何在Ubuntu系统上本地部署AlphaFold3。首先,我需要确认AlphaFold3是否已经公开发布。因为之前AlphaFold2是由DeepMind开源的,但AlphaFold3可能还在测试阶段或者尚未完全开放。所以,我应该先检查最新的信息,确认AlphaFold3是否已经可以公开使用。 如果确认可以部署的话,接下来需要考虑系统要求。AlphaFold对硬件的要求比较高,特别是GPU。用户需要有一块支持CUDA的NVIDIA显卡,显存至少12GB以上,可能更好。此外,存储空间也是一个问题,因为数据库很大,可能需要几百GB甚至更多的空间。 然后,安装依赖项。Ubuntu上需要安装Docker、CUDA驱动、Python环境等。可能需要使用conda来管理Python包,或者用Docker容器来简化环境配置。此外,AlphaFold可能依赖一些特定的库,比如HH-suite、OpenMM等,这些都需要正确安装。 下载数据库文件也是一个关键步骤。AlphaFold依赖多个生物信息学数据库,比如UniRef、PDB70等,这些数据库文件很大,下载可能需要很长时间,并且需要确保有足够的存储空间。用户可能需要通过脚本自动下载,或者手动下载并解压到指定目录。 配置AlphaFold的环境变量和参数,比如设置数据库路径、调整模型参数等。可能需要修改配置文件或者命令行参数,确保所有路径正确无误。 测试安装是否成功,运行示例蛋白的预测,查看是否有错误输出,结果是否符合预期。如果遇到错误,需要检查日志,常见的问题可能是路径错误、依赖库版本不兼容、GPU驱动问题或者内存不足。 另外,考虑到用户可能对生物信息学不熟悉,可能需要给出更详细的步骤说明,或者建议参考官方文档和社区支持。同时提醒用户注意硬件要求和时间成本,因为预测一个蛋白结构可能需要较长时间,尤其是没有高性能GPU的情况下。 可能还需要比较AlphaFold3和之前版本的区别,如果有的话,比如模型结构、准确度、新功能等,帮助用户了解升级的必要性。另外,如果AlphaFold3尚未公开,可能需要建议用户使用AlphaFold2,并提供相关资源链接。 最后,整理步骤,确保逻辑清晰,分点说明,方便用户逐步操作,并提醒常见问题和解决方法,比如权限问题、依赖缺失、CUDA版本不匹配等。</think>以下是 Ubuntu 系统本地部署 AlphaFold 的简要指南(注:截至2024年7月,**AlphaFold3 尚未正式开源**,DeepMind 仅发布了有限访问的 API。此处以已开源的 **AlphaFold2** 为例,若未来 AlphaFold3 开源可参考类似流程): --- ### 一、基础要求 1. **硬件** - **GPU**:NVIDIA 显卡(建议 RTX 3090/A100 等显存 ≥16GB) - **内存**:≥32GB - **存储**:≥3TB SSD(用于数据库和模型) 2. **系统** - Ubuntu 20.04/22.04 LTS - NVIDIA 驱动 ≥515.43.04 + CUDA ≥11.7 - 已安装 Docker 和 NVIDIA Container Toolkit --- ### 二、部署步骤(以 AlphaFold2 为例) #### 1. 安装依赖 ```bash # 安装 Docker 和 NVIDIA 支持 sudo apt-get install docker.io nvidia-container-toolkit sudo systemctl restart docker # 下载 AlphaFold 官方 Docker 镜像 docker pull ghcr.io/deepmind/alphafold ``` #### 2. 下载数据库(约 2.2TB) ```bash # 下载官方数据下载脚本 wget https://git.scicore.unibas.ch/schwede/openstructure/-/raw/master/scripts/download_alphafold_dbs.sh # 运行脚本(需指定存储路径,如 /data/alphafold) bash download_alphafold_dbs.sh /data/alphafold ``` #### 3. 运行预测 ```bash # 创建运行脚本 run_alphafold.sh docker run --gpus all \ -v /data/alphafold:/data \ -v $(pwd):/app \ ghcr.io/deepmind/alphafold \ --fasta_paths=your_protein.fasta \ --db_preset=full_dbs \ --model_preset=monomer ``` --- ### 三、常见问题 1. **显存不足** - 降低 `--model_preset` 参数(如使用 `monomer_ptm` 而非 `multimer`) - 减少并行线程数(`--max_template_date` 限制模板数据库日期) 2. **数据库下载中断** - 检查硬盘剩余空间(需 ext4/exFAT 格式,NTFS 可能出错) 3. **兼容性问题** - 确保 CUDA 版本与 Docker 镜像匹配 - 若使用非官方镜像,需自行编译 OpenMM 等依赖 --- ### 四、AlphaFold3 进展 - **现状**:截至2024年7月,AlphaFold3 仅通过 DeepMind 的 **AlphaFold Server** 提供有限访问,未开源代码。 - **替代方案**: - 使用 **ColabFold**(基于 AlphaFold2 的优化版,支持单体/复合物预测) - 关注官方 GitHub 和 Nature 论文更新: [https://github.com/deepmind/alphafold](https://github.com/deepmind/alphafold) 建议优先尝试 AlphaFold2 或 ColabFold 进行本地部署,待 AlphaFold3 开源后再调整流程。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值