IEEE标准:浮点数的表示

一,表示形式

从表面上看,浮点数也是一串0和1构成的位序列。IEEE标准从逻辑上用三元组{S,E,M}表示一个数N,如下图所示:
在这里插入图片描述
N的实际值n由下列式子表示:在这里插入图片描述
其中:
  ★ n,s,e,m分别为N,S,E,M对应的实际数值,而N,S,E,M仅仅是一串二进制位。
  ★ S(sign)表示N的符号位。对应值s满足:n>0时,s=0; n<0时,s=1。
  ★ E(exponent)表示N的指数位,位于S和M之间的若干位。对应值e值也可正可负。
  ★ M(mantissa)表示N的尾数位,恰好,它位于N末尾。M也叫有效数字位(sinificand)、系数位(coefficient), 甚至被称作“小数”。

二,浮点数格式

IEEE标准754规定了三种浮点数格式:单精度、双精度、扩展精度。前两者正好对应C语言里头的float、double或者FORTRAN里头的real、double精度类型。限于篇幅,本文仅介绍单精度、双精度浮点格式。
★ 单精度:N共32位,其中S占1位,E占8位,M占23位。
在这里插入图片描述
★ 双精度:N共64位,其中S占1位,E占11位,M占52位。

<think>首先,用户要求用中文回答问题。问题是关于制定一套量化指标和策略,基于环境天、板块地和个股人这些概念。 用户提供的信息: - **环境天**:包括情绪、大盘、连板、溢价、成交量,以及位置和变化。 - **板块地**:包括主线、暗线、龙头。 - **个股人**:包括龙头、低吸/追高/打板、首板+趋势+放量换手后再次启动、中位换手:放量承接且上升(缩量拉涨后续若放量还需看承接)。 我需要制定一套量化指标和策略来量化这些概念。 关键点: 1. **环境天**: - 情绪:市场情绪,可以用情绪指数、涨跌比等量化。 - 大盘:大盘指数如沪深300或上证指数,位置(如处于高位或低位)、变化(如涨跌幅)。 - 连板:连续涨停的股票数量,可以监控连板股的数量。 - 溢价:打板后的溢价率,即次日开盘涨幅。 - 成交量:市场总成交量,位置和变化(如是否放量或缩量)。 2. **板块地**: - 主线:主流板块,可以基于板块涨幅或资金流入。 - 暗线:隐藏主题,可能需要基于新闻或事件驱动。 - 龙头:板块龙头股,可以基于涨幅、成交额等。 3. **个股人**: - 龙头:同上。 - 低吸/追高/打板:交易策略,需要定义信号。 - 首板+趋势+放量换手后再次启动:首板是第一板,趋势是上升趋势,放量换手后再次启动。 - 中位换手:中等位置换手,放量承接且上升,缩量拉涨后需看放量承接。 我需要将这些转化为量化指标和策略。 **量化指标建议**: - **环境天指标**: - 情绪指数:例如,涨跌停比、市场宽度(上涨股数/下跌股数)。 - 大盘指数:位置(如相对于历史高点的百分比)、变化(日涨跌幅)。 - 连板数:每日连板股数量。 - 溢价率:平均打板次日开盘涨幅。 - 成交量:总成交量,变化率(如5日平均变化)。 - **板块地指标**: - 主线板块:板块相对强度(RS),如板块涨幅超过大盘的幅度。 - 暗线:可能基于主题热度指数,如新闻提及频率。 - 龙头股:板块内涨幅最大或成交额最高的股票。 - **个股人指标**: - 龙头识别:基于涨幅、换手率、市值等。 - 交易信号: - 低吸:股价回调到支撑位(如移动平均线)。 - 追高:股价突破阻力位。 - 打板:涨停板买入。 - 首板+趋势+放量换手后再次启动:首板后,趋势指标(如MACD金叉),放量换手(成交量增加),再次启动(突破形态)。 - 中位换手:中等位置(如股价在50日移动平均附近),换手率增加,承接(买盘强,如委比)。 **策略建议**: - **环境策略**:当情绪好、大盘上升、连板数多、溢价高、成交量放大时,增加仓位;反之,减少。 - **板块策略**:聚焦主线板块,监控暗线机会;龙头股优先。 - **个股策略**: - 龙头股:低吸或打板。 - 首板股:跟踪首板后趋势,放量换手后买入信号。 - 中位换手股:放量承接时买入,注意缩量拉涨后的风险。 输出格式: - 回答完问题后,必须提出3-5个相关问题。 - 第一行必须是"§§相关问题§§",然后列出问题。 - 禁止换行分散,所以问题应该连续列出。 回答结构: 1. 解释量化指标和策略。 2. 提供示例或伪代码。 3. 最后输出"§§相关问题§§"和3-5个问题。 确保所有内容符合规则。 最终输出: - 回答部分。 - "§§相关问题§§" - 问题列表。</think>基于您提供的环境天、板块地和个股人框架,我设计了一套量化指标和策略。这些指标旨在用数据驱动方式捕捉市场动态,策略则结合交易信号进行实操。所有指标均基于历史数据计算,可使用Python(如pandas、TA-Lib库)实现回测。 ### 量化指标定义 #### 1. **环境天指标**(监控整体市场状态) - **情绪指数**:计算涨跌停比例(涨停股数/跌停股数),若 >1.5 表示情绪乐观;结合市场宽度(上涨股数/总股数), >0.6 表示强势。 - **大盘位置与变化**:取大盘指数(如上证指数)的20日移动平均位置(当前值/历史高点百分比),<60%为低位;变化用5日涨跌幅标准差,>2%表示波动加剧。 - **连板数**:每日连续涨停股数量(连板 >=2 天),5日移动平均 >10 表示活跃。 - **溢价率**:打板次日开盘涨幅平均值(历史数据回溯),>3%为高溢价。 - **成交量变化**:市场总成交量5日变化率((今日量-5日前量)/5日前量),>10%为放量,<-10%为缩量。 #### 2. **板块地指标**(识别板块机会) - **主线强度**:板块相对强度(RS = 板块指数涨幅 / 大盘指数涨幅),RS >1.2 定义为主线。 - **暗线热度**:基于新闻API(如新浪财经)的主题提及频率,5日平均频率 >100 次为暗线启动。 - **龙头识别**:板块内个股涨幅前三且换手率 >10%,或成交额排名前五。 #### 3. **个股人指标**(个股交易信号) - **龙头信号**:同板块龙头指标,强化为涨幅 >20%且市值 <100亿。 - **低吸/追高/打板策略**: - 低吸:股价回踩10日移动平均线且RSI <30,成交量缩量(变化率 <-5%)。 - 追高:股价突破布林带上轨(20日,2标准差)且成交量放大(变化率 >10%)。 - 打板:涨停价买入(当日涨幅 >9.9%),结合环境溢价率 >3%过滤。 - **首板+趋势+放量换手后再次启动**: - 首板:当日首次涨停。 - 趋势:MACD金叉(快线 > 慢线)且ADX >25。 - 放量换手:换手率 >15%且成交量5日变化率 >20%。 - 再次启动信号:股价突破首板高点,且成交量放大。 - **中位换手**:股价在50日移动平均线 ±5%区间,换手率 >10%且买盘承接(委买量/委卖量 >1.5);缩量拉涨(成交量变化率 <-5%)后,需放量(变化率 >10%)且股价上涨确认。 ### 量化策略框架 策略分为三层,结合指标动态调整仓位: 1. **环境天策略**(仓位管理): - 当情绪指数 >1.5、大盘位置 >60%、连板数 >10、溢价率 >3%、成交量变化 >10%时,全仓操作。 - 否则,减仓至50%;若情绪指数 <0.8或大盘位置 <40%,空仓。 2. **板块地策略**(板块轮动): - 每日扫描主线板块(RS >1.2),优先龙头股。 - 暗线热度 >100 时,分配20%仓位至相关个股。 - 每周轮动,淘汰RS <1.0的板块。 3. **个股人策略**(交易执行): - 龙头股:以低吸或打板为主(环境好时打板,差时低吸)。 - 首板股:首板后跟踪,满足趋势+放量换手信号时买入,止损设置-5%。 - 中位换手股:放量承接时买入,缩量拉涨后需二次放量确认;止盈10%,止损-3%。 ### Python 伪代码示例 ```python import pandas as pd import talib def calculate_indicators(stock_data, market_data): # 环境天计算 market_data['emotion_index'] = market_data['up_limit'] / market_data['down_limit'] market_data['market_position'] = market_data['index'] / market_data['index'].max() * 100 market_data['board_count'] = market_data['continuous_limit_up'].rolling(5).mean() # 板块地计算 sector_data['rs_strength'] = sector_data['sector_return'] / market_data['index_return'] # 个股人计算 stock_data['low_absorb'] = (stock_data['close'] < talib.SMA(stock_data['close'], 10)) & (talib.RSI(stock_data['close'], 14) < 30) stock_data['restart_signal'] = (stock_data['high'] > stock_data['first_limit_high']) & (stock_data['volume'] > stock_data['volume'].shift(1) * 1.2) return market_data, sector_data, stock_data def trading_strategy(data): if data['emotion_index'] > 1.5 and data['board_count'] > 10: # 执行个股策略 if data['restart_signal']: return 'BUY' return 'HOLD' ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

SIR怀特

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值