聊聊性能优化:我如何为交易所的撮合引擎选择“兵器”?

聊聊性能优化:我如何为交易所的撮合引擎选择“兵器”?

从整理儿子的乐高说起

周末花了一上午,陪我四岁的儿子整理他那一大箱乐高积木。红色归一堆,蓝色归一堆;两格的放这边,四格的放那边。小家伙在一旁“监工”,时不时还提出新要求:“爸爸,那个轮子要单独放!”

这个过程让我哭笑不得,但也让我再次想起了我的老本行——设计交易系统。这个简单的分类、归位、查找的过程,不就是我们这些系统开发者每天都在面对的挑战吗?只不过,我们的“积木”是每秒数万笔的订单,而我们的“箱子”,就是撮合引擎的订单簿。

今天,不聊虚的。我想以一个在核心系统里摸爬滚打了十几年的老开发的身份,和你聊聊订单簿这个“箱子”的设计。我们会打开我的“工具箱”,看看里面都有哪些“兵器”(数据结构),以及我是如何为不同的场景选择它们的。

我的“兵器库”:盘点订单簿的几种数据结构

在我的职业生涯里,我尝试过、也踩过不少数据结构的“坑”。它们就像我的兵器库,每件都有自己的脾气和最擅长的战场。

1. 新手之锤:链表 (Linked List)

这是我们入行时最先学会使用的“兵器”,就像一把简单的锤子。新订单来了,直接“钉”在队尾,简单粗暴。但它的问题也正在于此。有一次,我们需要紧急撤掉一个处于队列中间的“坏订单”,系统愣是花了将近一秒钟才从头找到它。在交易世界,一秒钟,足以引发一场灾难。从那以后,我明白,简单的锤子,只能用来钉钉子,绝对不能用来造火箭。

2. 德系精密仪器:红黑树 (Red-Black Tree)

如果说链表是锤子,那红黑树就是我工具箱里那套德国产的精密仪器。它通过一套极其严谨的自平衡规则,确保了所有价格节点都井然有序。无论你做什么操作,它总能稳定地在 O(log n) 时间内完成,性能曲线平滑得像一条直线。缺点?就是太精密了。我至今还记得,当年为了手写一个可靠的红黑树,熬了多少个通宵,全靠一杯杯手冲咖啡才撑下来。

3. 特种兵匕首:堆 (Heap)

堆是一种“特种兵”武器。它的唯一使命,就是以最快的速度(O(1))告诉你“谁是第一名”。买单簿用大顶堆,卖单簿用小顶堆,找“买一价”和“卖一价”快如闪电。但如果你想干点别的,比如撤销一个排在中间的订单,它就彻底抓瞎了。这就像一把匕首,近身搏斗无敌,但你不能指望它干别的活。

4. 天才的“飞刀”:跳表 (Skip List)

跳表是我的心头好之一。它不像红黑树那么“重”,却能达到几乎同样的效果。我喜欢把它比作一把设计巧妙的“飞刀”,通过建立多层“索引”,让查找过程可以“跳跃”前进,极大地提升了效率。Redis 的有序集合(Sorted Set)能有如此出色的性能,跳表功不可没。它完美体现了程序员的智慧:用概率和空间,换取时间的极致效率。

我的实战选择:红黑树 + 队列的黄金搭档

在踩了无数坑、做了无数次取舍后,如今我的首选方案,也是业界公认最稳健的方案,是一个“组合技”:

用红黑树(或跳表)作为“军火库”,管理所有价格;在每个价格下,用一个双向链表队列作为“弹夹”,管理所有订单。

  • 红黑树负责“价格优先”:保证了查找价格的效率和稳定性。
  • 队列负责“时间优先”:保证了同一价格下,订单的公平性和先进先出。

这套组合拳,既有德国仪器的精准,又有流水线的效率,是我认为最能体现交易系统设计哲学——“在规则中追求极致性能”——的方案。

我的设计草图

在团队进行技术评审时,我通常会直接在白板上画出类似下面的草图,它比任何语言都更清晰。
在这里插入图片描述

性能大比拼:谁是真正的“时间刺客”?

光说不练假把式,我们用一张表格,让你看清各大门派的真实力!

武功门派关键操作插入/删除/更新查找价格空间占用一句话点评
链表维护队列O(1) / O(n)O(n)O(n)慢羊羊,第一个被淘汰。
红黑树维护价格O(log n)O(log n)O(n)武林正宗,稳定可靠,但难练。
跳表维护价格O(log n)O(log n)O(n)后起之秀,和红黑树一样快,但更容易上手。
取最优价O(log n)O(1)O(n)偏科生,优点突出,缺点致命。

终极方案:构建一个有序的“内存车间”

一个完整的撮合引擎,它的内存组织就像一个高度协同的“精密车间”。
在这里插入图片描述

  1. “订单登记处” (全局哈希表): 这是车间的入口,所有进来的订单(OrderID)都在这里登记,并拿到一个唯一的“工牌”(内存地址)。当我需要快速撤单时,就能通过这个工牌瞬间找到它。
  2. “价格分区” (红黑树/跳表): 车间被分成了“买方加工区”和“卖方加工区”,每个区都用红黑树管理,确保所有价格都分门别类,一目了然。
  3. “时间流水线” (双向链表): 在每个价格分区里,所有订单都按照进来的时间,在一个个流水线上排好队,等待处理。

一个老开发的思考:这套“车间”模型最让我着迷的,是它如何通过分层和组合,将撤单(需要O(1)的随机查找)和撮合(需要O(log n)的有序查找)这两个看似矛盾的需求,完美地统一在了一起。

写在最后

从整理儿子的乐高,到设计交易所的“内存车间”,我发现,我们这些开发者所做的事情,本质上都是在与“熵增”对抗,用逻辑和规则,在混乱中建立秩序。

今天我们聊的只是“兵器”的选择,但一场真正的战斗,还需要考虑更复杂的“战术”——比如那些被称为“IOC”或“FOK”的特殊订单指令。它们会给这个精密的“车间”带来怎样的冲击?

下一篇,我想和你聊聊这些“高级战术”。如果你也有过类似的性能优化“战争故事”,欢迎在评论区分享,我们一起“复盘”。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

老杨随便

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值