图像处理——平均池化

本文探讨了图像处理中的平均池化方法,该方法通过在固定大小的网络区域内计算像素的平均值来简化图像,这一操作在卷积神经网络中扮演关键角色。并提供了相关的Python和C++实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

图像处理——平均池化

将图像按照固定大小网络分割,网格内的像素值取网格内所有像素的平均值。池化操作是卷积神经网络中重要的操作。
在这里插入图片描述
python代码:

import cv2
import numpy as np

def average_pooling(img, G=8):
    out = img.copy()

    H, W, C = img.shape

    Nh = int(H/G)
    Nw = int(W/G)

    for j in range(Nh):
        for i in range(Nw):
            for c in range(C):
                out[G*j:G*(j+1), G*i:G*(i+1), c
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值