【论文阅读笔记】Fast-RCNN

本文深入探讨了Fast-RCNN的工作原理,重点解释了其使用3*3卷积核如何实现大步长滑动,以及Anchors的设计与作用。Fast-RCNN的损失函数关注于anchor box与真实边界框的偏移回归,并通过使用log来稳定预测边长的精度。在分类后,通过非极大值抑制选择最有可能的提案区域进行类别预测。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.Fast-RCNN

Ren S, He K, Girshick R, et al. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, 39(6):1137-1149.

 

因为使用3*3的卷积核在feature map 上以s步长进行滑动等于在输入图像上进行比s大很多的滑动,在论文中s=1,而约等于在输入图像上做步长为10的滑动。

Anchors: 其大小与形状与spatial window (卷积)的大小(n=3)无关

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值