软件类配置(一)【Windows下使用conda在虚拟环境中安装CUDA、CUDNN及Tensorflow】(重点)

该博客详细介绍了如何在Windows和Ubuntu上利用Anaconda创建并激活环境,然后通过conda和pip安装CUDA、cuDNN及TensorFlow-GPU。步骤包括创建环境、激活环境、安装CUDA和cuDNN以及安装TensorFlow-GPU。适用于希望快速配置深度学习环境的用户。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

喜大普奔!!! 使用anaconda直接安装深度学习环境所需的cuda、cudnn、tensorflow-gpu,windows,ubuntu都可以。参考文章

需要anaconda,以及nvidia的驱动。如果你是ubuntu的话,可以参考这个文章装nvidia驱动。

1.创建环境

conda create -n your_env_name python=X.X
如:
conda create -n starcraft python=3.5

2.激活环境:

activate your_env_name
如:
activate starcraft

3.安装cuda和cudnn(这步可以省略,直接安装Tensorflow-gpu即可,会自动安装好依赖)

conda install cudatoolkit=9.0 -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/linux-64/
conda install cudnn=7.1.4 -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/linux-64/

4.安装tensorflow-gpu(这里需要和之前的版本对应到)。

pip install tensorflow-gpu==1.9.0

参考:
https://zhiqianghe.blog.csdn.net/article/details/86565922?utm_medium=distribute.pc_relevant.none-task-blog-2%7Edefault%7EBlogCommendFromMachineLearnPai2%7Edefault-2.control&depth_1-utm_source=distribute.pc_relevant.none-task-blog-2%7Edefault%7EBlogCommendFromMachineLearnPai2%7Edefault-2.control

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值