引言
深度学习技术在图像识别领域取得突破,使得相关领域研究者开始研究如何将一维数据转换成二维的图像。好处是,一维数据中的关键信息可以在二维图像中充分的突出,利用深度学习技术(CNNs,Transformer,图神经网络、注意力网络)也可以学习到图像中的全局的相关性信息,有利于解决相关领域复杂问题,适用于故障诊断、状态识别等分类任务。大量的论文表明:一维数据图像编码结合深度学习的智能故障诊断、识别方法,可显著提高识别精度。
本期不完全整合了 28种 一维数据转二维图像方法及其matlab代码(持续更新),并循环一键自动生成用于网络训练的图像数据集,方便与后续深度学习网络(CNNs,Transformer,注意力网络)无缝结合实现故障诊断与识别。内含必要操作注释,新手老手完美无忧上手。
1. 梅尔频谱图Mel spectrogram
2. 短时傅里叶变换short-time Fourier transform
3. s变换S-transform
4. 魏格纳分布Wigner-Ville Distribution
5. 离散魏格纳分布Discrete Wigner-Ville Distribution
6. 希尔伯特变换Hilbert-Huang Transform
7. 连续小波变换Continuous wavelet transform
8. 实小波变换Real wavelet transform
9. 同步压缩变换Synchrosqueezing transform
10. 小波同步压缩变换wavelet synchrosqueezed transform
11. 小波二阶同步压缩变换wavelet second order synchrosqueezed transform
12. 垂直二阶同步压缩变换vertical second-order synchrosqueezing
13. 多尺度同步压缩变换Multisynchrosqueezing Transform
14. 小波多尺度同步压缩变换Wavelet Multisynchrosqueezed Transform
15. 局部最大同步压缩变换Local maximum synchrosqueezing transform
16. 时间重分配多同步压缩变换Time-reassigned Multisynchrosqueezing Transform
17. 同步提取变换Synchroextracted transform
18. 小波同步提取变换Wavelet Synchroextracted Transform
19. 暂态提取变换transient-extracting transform
20. 二阶暂态提取变换Second-order transient-extracting transform
21. 格拉姆角和场Gramian angular summation field
22. 格拉姆角差场Gramian angular difference field
23. 递归图recurrence plots
24. 相对位置矩阵Relative Position Matrix
25. 相对角矩阵Relative angle matrix
26. 对称点模式Symmetrized Dot Pattern
27. 马尔可夫转移场Markov Transition Field
28. 符号递归图Symbolic recurrence plots
注:本公众号轻理论,重代码分享
只简单分享原论文理论部分,若想拜读,请下载原论文细读
小编能力有限,如有翻译不恰之处,请多多指正~
"参照、模仿、思考,站在巨人肩膀,才能看得更远"
文末获取代码
02. 简要说明及结果
相关方法的理论部分在知网上已经有很多了,这里不再赘述。本期以一段一维数据展示样本的生成原理,可以替换各种数据集。生成原理如下:以一个滑动窗口去切分原始数据,这样形成多个样本,每个样本对应一张图像。这样就生成了机器学习、深度学习网络所需要的样本。
本期以长度为1024的窗口来分割原始一维数据,即分割后的每段子数据包含了1024个数据点,不重叠的切分。为了节省时间,暂以自动生成了5个样本为例,展示效果。
注意:样本数据个数跟原始数据长度和窗口长度选择有关。如果已划分好样本了,那么窗口长度等于样本数据长度。
梅尔频谱图Mel spectrogram
连续小波变换Continuous wavelet transform
s变换
递归图Reccurence Plots
魏格纳分布Wigner-Ville Distribution
格拉姆角差场GADF
格拉姆角和场GASF
参考文献
-
Wang, Zhiguang , and T. Oates . "Imaging Time-Series to Improve Classification and Imputation." AAAI Press (2015).
-
G. Yu, M. Yu and C. Xu, "Synchroextracting Transform," IEEE Transactions on Industrial Electronics, vol. 64, no. 10, pp. 8042-8054, Oct. 2017. doi: 10.1109/TIE.2017.2696503
-
He, Zhoujie , et al. "Second-Order Transient-Extracting Transform With Application to Time-Frequency Filtering." IEEE Transactions on Instrumentation and Measurement 69-8(2020).
-
W. Chen and K. Shi, “A deep learning framework for time series classification using Relative Position Matrix and Convolutional Neural Network,” Neurocomputing, vol. 359, pp. 384–394, Sep. 2019
-
G. Yu, "A Concentrated Time–Frequency Analysis Tool for Bearing Fault Diagnosis," in IEEE Transactions on Instrumentation and Measurement, vol. 69, no. 2, pp. 371-381, Feb. 2020, doi: 10.1109/TIM.2019.2901514.
-
CABALLERO-PINTADO M V, MATILLA-GARCÍA M, RUIZ MARÍN M. Symbolic recurrence plots to analyze dynamical systems. Chaos, 2018, 28(6): 063112.
-
Yu, Gang , et al. "Local maximum synchrosqueezing transform: An energy-concentrated time-frequency analysis tool." Mechanical Systems and Signal Processing 117.FEB.15(2019):537-552.
-
Li, Pu Li, Qingzhao . "Fault diagnosis of rolling bearing using symmetrized dot pattern and density-based clustering." Measurement 152(2020).
-
G. Yu, T. Lin, Z. Wang and Y. Li, "Time-Reassigned Multisynchrosqueezing Transform for Bearing Fault Diagnosis of Rotating Machinery," in IEEE Transactions on Industrial Electronics, vol. 68, no. 2, pp. 1486-1496, Feb. 2021, doi: 10.1109/TIE.2020.2970571.
-
Wang, L., & Zhao, W. (2025). An ensemble deep learning network based on 2D convolutional neural network and 1D LSTM with self-attention for bearing fault diagnosis. Applied Soft Computing, 172, 112889.
Matlab代码下载
微信搜索并关注-优化算法侠(英文名:Swarm-Opti),或扫描下方二维码关注,以算法名字搜索历史文章即可下载。
2025年故障诊断的创新思路在哪里?赶紧来学习这28种创新方法!
2025年故障诊断的创新思路在哪里?赶紧来学习这28种创新方法!
点击链接跳转:
390种优化算法免费下载-matlab
https://mp.weixin.qq.com/s/EzKqtSwR9r2DkGj-ozJXwA
求解cec测试函数-matlab
cec2022测试函使用教程及matlab代码免费下载
绘制cec2017/018/2019/2020/2021/2022函数的三维图像教程,SO EASY!